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Privacy Concerns in Model Training

⋄ The training of prediction models hinges on the use of pri-
vate and sensitive user data such as credit history.

⋄ Risk: model inversion attack [Ghosh et al., 2009] exposes
sensitive user data using just the training history of SGD.

⋄ Distribution Shift: user reacts to the changing models,
also known as performative prediction problem.

⋄ Performative Prediction [Perdomo et al., 2020]

min
θ∈X

EZ∼D(θ)[ℓ(θ;Z)],

⋄ Dist. shifts also affects the convergence of SGD and their
efficacy since the distribution of gradient estimates vary.

Privacy Preserving Algorithm

⋄ (ε, δ)-DP (privacy budget, leakage probability)

Pr[M(D) ∈ S] ≤ eεPr[M(D′) ∈ S] + δ [Dwork et al., 2014]

⋄ Projected clipped SGD algorithm [Abadi et al., 2016]:

θt+1 = PX (θt − γt+1clipc (stoc. grad) + ζt+1)

where P(·) is projection operator, ζt+1 is Gaussian noise,

clipc(g) : g ∈ Rd 7→ min
{
1, c

∥g∥2

}
g,

is designed to reduce gradient exposure.

⋄ Research Question: What effect does performativity
have on bias and convergence of clipped SGD algorithms?

Our Answer: PCSGD converges to a biased solution
in expectation, bias ∝ O(1/dist. shift sensitivity).

PCSGD Algorithm

⋄ Update Rule: PCSGD scheme:

θt+1 = PX
(
θt−γt+1(clipc(∇ℓ(θt;Zt+1)) + ζt+1)

)
,

⋄ Greedy deployment sampling scheme: Zt+1 ∼ D(θt).

✿ Difficulty: clipping operator is non-smooth and leads to

EZ∼D(θ)clipc(∇ℓ(θ;Z)) ̸= EZ∼D(θ)(∇ℓ(θ;Z))

Main Results

f (θ1,θ2) := EZ∼D(θ2)[ℓ(θ1;Z)],∇f (θ1,θ2) := EZ∼D(θ2)[∇ℓ(θ1;Z)].

⋄ A1: µ-strongly convex of f (θ1;θ2) w.r.t. θ1.

⋄ A2: Maps ∇f (·; θ̄) and ∇ℓ(θ̄; ·) are L-Lipschitz.
⋄ A3: Wasserstein-1 Dist.: W1(D(θ),D(θ′)) ≤ β∥θ − θ′∥.
⋄ A4: Uniform bound: supθ∈X ,z∈Z ∥∇ℓ(θ; z)∥ ≤ G

→ reasonable, since X is a compact set

Theorem 1: (Upper bound) Under A1-4. Suppose that
β < µ/L, the step sizes {γt}t≥1 are non-increasing and
sufficient small. Then, for any t ≥ 1,

E
∥∥∥θ̃t+1∥∥∥2 ≲ t+1∏

i=1

(1− µ̃γi)
∥∥∥θ̃0∥∥∥2+c1

µ̃
γt+1 +

max{G− c, 0}2

(µ− Lβ)2
,

where θ̃t := θt − θPS, µ̃ = µ− Lβ. Note (c, β →Bias)

⋄ When c ≥ G, then bias vanishes. Our convergence rate
O(γt) coincides with prior works.

⋄ When c < G, to achieve minimum bias, the opt. constant
stepsize is γ⋆ = O(1/(µ̃T )).

Theorem 2: (Lower bound) For any c ∈ (0, G), ∃ℓ(θ;Z)
and D(θ) satisfying A1-4, s.t. for fixed-points of PCSGD
θ∞ satisfying EZ∼D(θ∞)[clipc(∇ℓ(θ∞;Z))] = 0, it holds

∥θ∞ − θPS∥2 = Ω
(
1/(µ− Lβ)2

)
.

⋄ Provided that β < µ
L, Theorems 1 and 2 show that

PCSGD admits an unavoidable bias of Θ(1/(µ− Lβ)2).

Corollary 1: (Differential Privacy Guarantee) For any
ε ≤ T/m2, δ ∈ (0, 1), and c > 0, PCSGD with greedy
deployment is (ε, δ)-DP after T iterations if we let

σDP ≥ c
√

T log(1/δ)/(mε).

Numerical Simulation: Quadratic Minimization

minθ∈X Ez∼D(θ)[(θ+az)2/2],D(θ) = {bZ̃i−βθ}mi=1
where Z̃i ∼ B(p) is Bernoulli. Note θPS = −p̄a

1−aβ.

⋄ Observations: PCSGD cannot converge to θPS

due to bias which increases as β ↑.
⋄ Effect of stepsize on bias: Optimal stepsize, γ⋆,

minimizes bias. (non-opt stepsize γ = log(1/∆(µ))
µT ).
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⋄ As the privacy budget decreases ε ↓ 0 or β ↑ µ
L, the bias ↑.
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