Deploy: $Z_{t+1} \sim {\cal D}( \prm_t )$
Update: $\prm_{t+1} = {\cal P}_{\cal X} \big(\prm_t - \gamma_{t+1} \clip_c( \grad \lossfn(\prm_t; Z_{t+1})) \big)$
where ${\cal P}_{\cal X}(\cdot)$ denotes the Euclidean projection operator onto ${\cal X}$, and $\clip_c(\cdot)$ is the clipping operator: for any $\bm{g} \in \RR^d$,
$\clip_{c} ( \bm{g} ): \bm{g} \in \RR^d \mapsto \min\left\{1, {c} / {\norm{\bm{g}}_2} \right\} \bm{g}$
where $c>0$ is a clipping parameter.