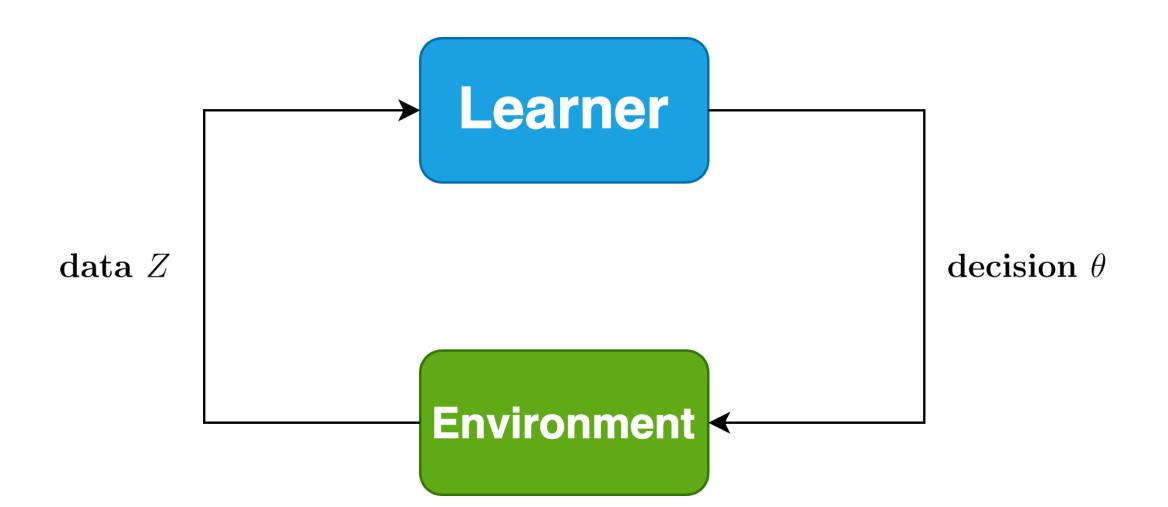
Two-timescale Derivative Free Optimization for Performative Prediction with Markovian Data

Performative Prediction

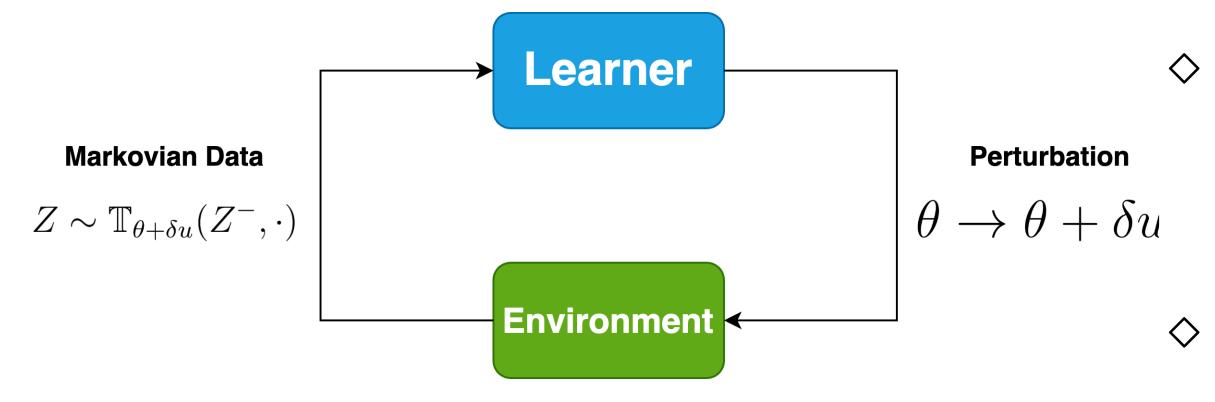
- ♦ Performative Prediction: data distri- ♦ bution depends on decision variables.
- ♦ Motivating Examples: loan classification, pricing, ride sharing.



- ♦ Goal: minimize the performative risk, $\min_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}) := \mathbb{E}_{Z \sim \Pi(\boldsymbol{\theta})}[\ell(\boldsymbol{\theta}; Z)] \rightarrow \mathsf{ncvx}$
- * Evaluate $\nabla \mathcal{L}(\theta)$ needs known $\Pi_{\theta}(\cdot)$: $\mathbb{E}_{Z \sim \Pi_{\theta}}[\nabla \ell(\theta; Z) + \ell(\theta; Z) \nabla \log \Pi_{\theta}(Z)].$

Zeroth Order Oracle & Markovian Data

- \diamond One-point gradient estimator $g_{\delta}(\cdot)$. Absence of prior knownledge on $\Pi_{\theta} \rightarrow$ deploy and observe $\ell(\theta; \cdot)$ at perturbed decision points $\theta + \delta u$ to estimate $\nabla \mathcal{L}$.
- \diamond Markovian Sample: $Z_t \sim \Pi_{\theta} \not$.
- * cannot draw samples directly from $\Pi_{\theta} \rightarrow$ sample reweighting using the forgetting factor λ .



Haitong Liu, Dept. of CS, ETH Zurich, Qiang Li, Hoi-To Wai Dept. of SEEM, CUHK **DFO**(λ) Algorithm

Idea: Construct zero-th order $\mathcal{O}(\delta)$ -biased gradient estimator for $\mathcal{L}(\theta)$ as g_{δ} , to avoid evaluating a priori unknown $\Pi_{\theta}(\cdot)$

 $g_{\delta}(\boldsymbol{\theta};\boldsymbol{u},Z) \coloneqq \frac{d}{\delta}\ell(\check{\boldsymbol{\theta}};Z)\boldsymbol{u}, \text{ with } \check{\boldsymbol{\theta}} \coloneqq \boldsymbol{\theta} + \delta\boldsymbol{u}, Z \sim \Pi_{\check{\boldsymbol{\theta}}}(\cdot), \boldsymbol{u} \sim \mathsf{Unif}(\mathbb{S}^{d-1})$ \diamond unbiased estimator for $\nabla \mathcal{L}_{\delta}(\theta)$, while $\mathcal{L}_{\delta}(\theta)$ is a smooth approx of $\mathcal{L}(\theta)$.

Two-timescale Derivative Free (DFO(\lambda)) Algorithm

Outer Loop $(k: 0 \rightarrow T - 1)$: Set stepsize δ_k and η_k , inner loop range τ_k Inner loop $(m: 1 \rightarrow \tau_k)$: Deploy $\check{\boldsymbol{\theta}}_{k}^{(m)} = \boldsymbol{\theta}_{k}^{(m)} + \delta_{k}\boldsymbol{u}_{k}$, Sample $Z_{k}^{(m)} \sim \mathbb{T}_{\check{\boldsymbol{\theta}}_{k}^{(m)}}$ Update $\boldsymbol{\theta}_{k}^{(m+1)} = \boldsymbol{\theta}_{k}^{(m)} - \eta_{k} \boldsymbol{\lambda}^{\tau_{k}-m} \boldsymbol{g}_{\delta_{k}} \left(\boldsymbol{\theta}_{k}^{(m)}, \boldsymbol{u}_{k}, Z_{k}^{(m)} \right)$ End inner loop : $Z_{k+1} \leftarrow Z_k^{(\tau_k)}, \theta_{k+1} \leftarrow \theta_k^{(\tau_k+1)}$. **Output** : θ_s , where $s \sim \text{Uniform}(\{0, 1, \ldots, T\})$.

Highlights : (i) two-timescales step sizes, (ii) make use of every sample, (iii) trade-off between sample accumulation and MC mixing time via λ .

Main Results

 \Diamond

♦ A1. $\|\nabla \mathcal{L}(\theta) - \nabla \mathcal{L}(\theta')\| \le L \|\theta - \theta'\|$ A2. (Bounded loss) $|\ell(\theta; z)| \le G$ ♦ A3a. (Lipschitz distribution map) $\delta_{TV}(\theta, \theta') \leq L' \|\theta - \theta'\|$ $\diamond \text{ A3b. } (L_1 \text{-sensitivity}) |\ell(\boldsymbol{\theta}, z) - \ell(\boldsymbol{\theta}, z')| \leq L_0 ||z - z'||, W_1(\Pi_{\boldsymbol{\theta}}, \Pi_{\boldsymbol{\theta}'}) \leq L_1 ||\boldsymbol{\theta} - \boldsymbol{\theta}'||$ ♦ A4. (Geometric mixing) $\delta_{TV} (\mathbb{P}_{\theta}(Z_k \in \cdot \mid Z_0 = z), \Pi_{\theta}) \leq M \rho^k$. ♦ A5. (Smooth Markov kernel) $\delta_{TV}(\mathbb{T}_{\theta}(z, \cdot), \mathbb{T}_{\theta'}(z, \cdot)) \leq L_2 \|\theta - \theta'\|$

Theorem 1: Using step sizes $\eta_k \propto k^{-2/3}, \delta_k \propto k^{-1/6}, \tau_k \propto \log k$, the iterate of $\mathsf{DFO}(\lambda)$ satisfies $\frac{1}{1+T} \sum_{k=0}^{T} \mathbb{E} \|\nabla \mathcal{L}(\boldsymbol{\theta}_k)\|^2 \leq \mathcal{O}\left(\frac{d^{2/3}}{T^{1/3}}\right)$

 ϵ -stationary: above metric achieves ϵ -target acc. after $\mathcal{O}\left(d^2/\epsilon^3\right)$ iter. ♦ Sample complexity: $S_{\epsilon} = \mathcal{O}(d^2/\epsilon^3) \leftarrow$ worse than $\mathcal{O}(d/\epsilon^2)$. **Estimator (I)**: prior two point estimator g_{2pt-1} [Ghadimi & Lam, 2013] $g_{2pt-I} := \frac{d}{\delta} \left[\ell \left(\boldsymbol{\theta} + \delta \boldsymbol{u}; Z \right) - \ell (\boldsymbol{\theta}; Z) \right] \boldsymbol{u} \rightarrow \text{biased} \times \text{since } Z \sim \Pi_{\boldsymbol{\theta} + \delta \boldsymbol{u}},$ which is unique feature of decision-dependent sample distribution. $\diamond \text{ Estimator (II): } g_{2pt-II} := \frac{d}{\delta} \left[\ell \left(\theta + \delta u; Z_1 \right) - \ell \left(\theta; Z_2 \right) \right] u \rightarrow \text{ unbiased}$ Same variance $\mathbb{E} \| \boldsymbol{g}_{2pt-II} \|^2 = \Omega(1/\delta^2)$, but higher sampling overhead X

$$\binom{Z_k^{(m-1)}, \cdot}{Z_k} \to \text{ forgetting factor}$$

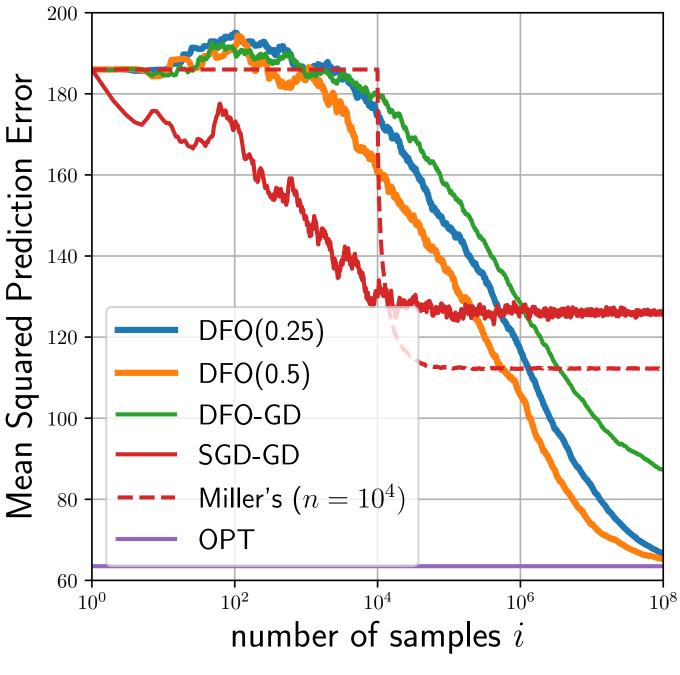
Numerical Experiments

- Markovian Regression —

$$\begin{cases} X_t \sim \mathcal{N} \\ Y_t | X_t \sim \end{cases}$$

- \diamond DFO-GD (no burn-in phase),

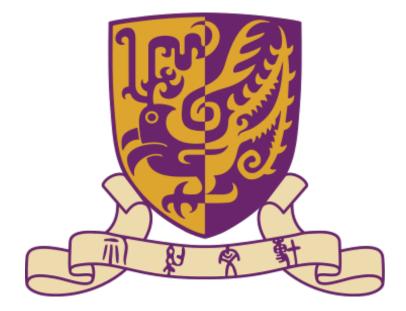
Observations



Reference

- mative prediction NeurIPS 2020.
- performative risk. In ICML 2021.

ETHzürich



♦ Quadratic Loss: $\ell(\theta; x, y) = (\langle x, \theta \rangle - y)^2$ $\diamond \text{ AR Model: } (\tilde{X}_t, \tilde{Y}_t) = (1 - \gamma)(\tilde{X}_{t-1}, \tilde{Y}_{t-1}) + \gamma(X_t, Y_t),$ where γ controls the mixing rate of the Markov chain. **Stationary samples**: (X_t, Y_t) is drawn according to $\mathcal{N}(\mathbf{0}, rac{2-\gamma}{\gamma}\sigma_1^2 \mathbf{I}),$ $\sim \mathcal{N}(\langle \mathbf{x}_t + \kappa \boldsymbol{\theta}_{t-1}, \boldsymbol{\theta}_0 \rangle, \frac{2-\gamma}{\gamma} \sigma_2^2),$ where $\gamma = 0.25$, $\kappa = 1/ \| \boldsymbol{\theta}_0 \|$, $\sigma_1 = \sigma_2 = 1$. ♦ **Goal**: Comparison of 4 state-of-the-art algorithms: \diamond SGD with greedy deployment from [Mendler et al., 2020], \diamond Two-Phase algorithm from [Miller et al., 2021]: \diamond (Phase I) Estimate distribution map Π_{θ} \diamond (Phase II) Minimize finite-sample approx. of $\mathcal{L}(\theta)$, ♦ Our DFO(λ) with $\lambda \in \{0.25, 0.5\}$.

 \diamond X DFO/SGD-GD fail to find a stationary solution to $\mathcal{L}(\theta)$. \diamond X Two-Phase algorithm fail neither even with 10⁴ (Markovian) samples gathered in the first phase.

 \diamond Compared to above algorithms, DFO(λ) converges to a near-optimal solution after reasonable samples.

◇ Perdomo, Juan, et al. Performative prediction, ICML 2020. ♦ Mendler-Dünner, et al. *Stochastic optimization for perfor-*♦ Miller, et al. Outside the echochamber: Optimizing the