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Performative Prediction

⋄ Performative Prediction: data distri-
bution depends on decision variables.

⋄ Motivating Examples: loan classifica-
tion, pricing, ride sharing.

⋄ Goal: minimize the performative risk,

min
θ
L(θ) := EZ∼Π(θ)[ℓ(θ;Z )]→ ncvx

✽ Evaluate ∇L(θ) needs known Πθ(·):
EZ∼Πθ

[∇ℓ(θ;Z ) + ℓ(θ;Z )∇ log Πθ(Z )].

Zeroth Order Oracle & Markovian Data

⋄ One-point gradient estimator gδ(·).
Absence of prior knownledge on Πθ →
deploy and observe ℓ(θ; ·) at perturbed
decision points θ + δu to estimate ∇L.

⋄ Markovian Sample: Zt ∼ Πθ ✗.

✽ cannot draw samples directly from Πθ →
sample reweighting using the forgetting
factor λ.

DFO(λ) Algorithm

⋄ Idea: Construct zero-th order O(δ)-biased gradient estimator for L(θ) as
gδ, to avoid evaluating a priori unknown Πθ(·)

gδ(θ;u,Z ) :=
d

δ
ℓ(θ̌;Z )u, with θ̌ := θ + δu,Z ∼ Πθ̌(·),u ∼ Unif(Sd−1)

⋄ unbiased estimator for ∇Lδ(θ), while Lδ(θ) is a smooth approx of L(θ).

Two-timescale Derivative Free (DFO(λ)) Algorithm

Outer Loop (k : 0→ T − 1) : Set stepsize δk and ηk, inner loop range τk
Inner loop (m : 1→ τk) :
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→ forgetting factor

End inner loop : Zk+1← Z
(τk)
k ,θk+1← θ

(τk+1)
k .

Output : θs, where s ∼ Uniform ({0, 1, . . . ,T}) .

✿ Highlights : (i) two-timescales step sizes, (ii) make use of every sample,
(iii) trade-off between sample accumulation and MC mixing time via λ.

Main Results

⋄ A1. ∥∇L(θ)−∇L(θ′)∥ ≤ L ∥θ − θ′∥ A2. (Bounded loss) |ℓ(θ; z)| ≤ G

⋄ A3a. (Lipschitz distribution map) δTV (θ,θ′) ≤ L′ ∥θ − θ′∥
⋄ A3b. (L1-sensitivity) |ℓ(θ, z)− ℓ(θ, z ′)| ≤ L0 ∥z − z ′∥ , W1 (Πθ,Πθ′) ≤ L1 ∥θ − θ′∥
⋄ A4. (Geometric mixing) δTV (Pθ(Zk ∈ · | Z0 = z),Πθ) ≤ Mρk.

⋄ A5. (Smooth Markov kernel) δTV (Tθ(z , ·),Tθ′(z , ·)) ≤ L2 ∥θ − θ′∥

Theorem 1: Using step sizes ηk ∝ k−2/3, δk ∝ k−1/6, τk ∝ log k , the
iterate of DFO(λ) satisfies 1

1+T

∑T
k=0E ∥∇L(θk)∥

2 ≤ O
(
d 2/3/T 1/3

)
⋄ ϵ-stationary: above metric achieves ϵ-target acc. after O

(
d 2/ϵ3

)
iter.

⋄ Sample complexity: Sϵ = O
(
d 2/ϵ3

)
← worse than O(d/ϵ2).

⋄ Estimator (I): prior two point estimator g2pt−I [Ghadimi & Lam, 2013]

g2pt−I :=
d
δ [ℓ (θ + δu;Z )− ℓ(θ;Z )]u → biased ✗ since Z ∼ Πθ+δu,

which is unique feature of decision-dependent sample distribution.

⋄ Estimator (II): g2pt−II := d
δ [ℓ (θ + δu;Z1)− ℓ(θ;Z2)]u → unbiased

Same variance E ∥g2pt−II∥2 = Ω(1/δ2), but higher sampling overhead ✗

Numerical Experiments

Markovian Regression —

⋄ Quadratic Loss: ℓ(θ; x , y) = (⟨x ,θ⟩ − y)2

⋄ AR Model: (X̃t, Ỹt) = (1 − γ)(X̃t−1, Ỹt−1) + γ(Xt,Yt),
where γ controls the mixing rate of the Markov chain.

⋄ Stationary samples: (Xt,Yt) is drawn according to{
Xt ∼ N (0, 2−γγ σ2

1I ),

Yt|Xt ∼ N (⟨xt + κθt−1,θ0⟩ , 2−γγ σ2
2),

where γ = 0.25, κ = 1/ ∥θ0∥, σ1 = σ2 = 1.

⋄ Goal: Comparison of 4 state-of-the-art algorithms:

⋄ SGD with greedy deployment from [Mendler et al., 2020],
⋄ Two-Phase algorithm from [Miller et al., 2021]:

⋄ (Phase I) Estimate distribution map Πθ

⋄ (Phase II) Minimize finite-sample approx. of L(θ),
⋄ DFO-GD (no burn-in phase),
⋄ Our DFO(λ) with λ ∈ {0.25, 0.5}.

Observations

⋄ ✗ DFO/SGD-GD fail to find a stationary solution to L(θ).
⋄ ✗ Two-Phase algorithm fail neither even with 104 (Marko-

vian) samples gathered in the first phase.

⋄ ✓Compared to above algorithms, DFO (λ) converges to a
near-optimal solution after reasonable samples.
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