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Performative Prediction

▶ Motivation: Learning in economic or societal environment is
causative: the models aim to predict can be influenced by the
models themselves.

Examples:
▶ Hiring process: Job Description → applicants tailor their CV →

Employer evaluates applicants.
▶ Applicants who prepared strategically have an advantage,

improving their chances of being hired.

▶ Spam Email Detection: Email server design filters to protect
their users → Spammers circumvent filters to distribute malware
and ADs.
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Performative Prediction (Cont’d)

Loan application scenario:

▶ Bank’s Approval Criteria f(·)
▶ Denied Applicant’s Response

▶ Strategic Adaptation

▶ Increased Chances.

Applicants’ behavior:

▶ 1. know ...

▶ 2. want?

▶ 3. do!

▶ 4. outcome

▶ Two Entities: learner and agents’
population.

▶ Key Difference between classical
supervised learning: intelligent
agent’s behavior.
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Mathematical Model
Perdomo et al. (2020) proposed to study the risk minimization
problem with a decision-dependent data distribution:

min
θ∈Rd

V (θ) := EZ∼D(θ)[ℓ(θ;Z)] (1)

where ℓ(θ;Z) is continuously differentiable loss function w.r.t. θ
for given z ∈ Z.

▶ Model entire population’s responses.

▶ Avoids micro-level agent incentive modeling.

▶ ϵ-sensitive assumption: d(D(θ),D(θ′))≤ϵ ∥θ − θ′∥.

Position of Perf. Pred.:

▶ Performative Prediction is a special example of distribution shift
and causality, it lies in the intersection between machine learning
and game theory.

▶ Another lines investigate distribution shift is strategic machine
learning, see Rosenfeld (2024).
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Research Gap

▶ Existing analysis are limited to the case when ℓ(θ;Z) are strongly
convex w.r.t. θ or impose structure on D(θ).

min
θ∈Rd

V (θ) := EZ∼D(θ)[ℓ(θ;Z)] → scvx

▶ Perdomo et al. (2020) introduced performative stable (PS)
solution as the unique minimizer of (1) with fixed dist., i.e.,

θPS := argmin
θ∈Rd

EZ∈D(θPS)[ℓ(θ;Z)] → fixed point sol.

▶ Algorithm: SGD with greedy deployment recursion:

θt+1 = θt − γt+1∇ℓ(θt;Zt+1), where Zt+1 ∼ D(θt) (2)

▶ Cons: strong convexity assumption limits the class of classifier in
machine learning tasks, such as neural network.

▶ In non-convex analysis, we need a new metric → SPS solution.
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Our Contribution

▶ We firstly propose the concept of stationary performative stable
(SPS) solution relaxing PS condition, which is necessary for
handling non-convex losses using first-order methods.

▶ δ stationary performative stable (SPS) solution: Let δ ≥ 0,
the vector θ⋆ ∈ Rd is said to be an δ stationary performative
stable (δ-SPS) solution if:

∥∇1J(θ
⋆;θ⋆)∥2 =

∥∥EZ∼D(θ⋆) [∇ℓ(θ⋆;Z)]
∥∥2 ≤ δ.

▶ δ ≥ 0 measures the stationarity of a solution.

▶ If ℓ(θ; z) is strongly convex w.r.t. θ, then an SPS solution is also
a PS solution.
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Our Contribution (Cont’d)

▶ We show that SGD-GD finds a O(ϵ)-biased SPS solution.
▶ Bias level is further improved to O(ϵ2) when the gradient is exact.

▶ Techniques: our analysis relies on constructing a time varying
Laypunov function.
▶ We study two alternative conditions on the distance metric:

Wasserstein-1 distance and total variation (TV) distance.

▶ Extension: we extend the analysis to the lazy deployment
scheme with SGD. As the epoch length grows, it can find
bias-free SPS solution.
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Definitions & Assumptions

J(θ1;θ2) = EZ∼D(θ2) [ℓ(θ1;Z)] , ∇1J(θ1;θ2) = EZ∼D(θ2) [∇ℓ(θ1;Z)] .

We observe that V (θ) = J(θ,θ), ∇V (θ) ̸= ∇1J(θ;θ) in general.

▶ A1: ∥∇ℓ(θ; z)−∇ℓ(θ′; z)∥≤L ∥θ−θ′∥,∀θ,θ′ ∈ Rd, ℓ(θ; z)≥ℓ⋆>−∞.

▶ A2: Assume that there exists constants σ0, σ1 ≥ 0 such that

EZ∼D(θ2)

[
∥∇ℓ(θ1;Z)−∇1J(θ1;θ2)∥2

]
≤ σ2

0 + σ2
1 ∥∇J(θ1;θ2)∥2 .

▶ A3: ϵ sensitivity d(D(θ),D(θ′)) ≤ ϵ ∥θ − θ′∥. (will be specified later.)
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Main Results (I)

Theorem 1. Under A1-3. Let the step size satisfies supt≥1 γt ≤ 1/(L(1+ σ2
1)).

Then, for any T ≥ 1, the iterates {θt}t≥0 generated by SGD-GD satisfy

T−1∑
t=0

γt+1

4
E ∥∇1J(θt;θt)∥2≤∆0+L̃ϵ

(
σ0 + (1 + σ2

1)L̃ϵ
) T−1∑

t=0

γt+1+
Lσ2

0

2

T−1∑
t=0

γ2
t+1,

where ∆0 := J(θ0;θ0)− ℓ⋆ is an upper bound to the initial optimality gap of
performative risk.

▶ Corollary 1. Under A1-3. Let T ≥ 1 be the maximum number of iterations
and set γt = 1/

√
T . For any sufficient large T , the iterates by SGD-GD satisfy

E
[
∥∇1J(θT;θT)∥2

]
≤ 4

(
∆0 +

L

2
σ2
0

)
· 1√

T
+ 4L̃ϵ (σ0 + (1 + σ2

1)L̃ϵ)︸ ︷︷ ︸
O(ϵσ0+ϵ2)−bias

. (3)

where T is a r.v. chosen uniformly and independently from {0, 1, · · · , T − 1}.
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Discussion of Theorem 1

▶ Corollary 1. Set γt = 1/
√
T . For sufficient large T , it holds that

E[∥∇1J(θT;θT)∥2] ≲
1√
T

+ L̃
(
ϵσ0 + ϵ2

)
.

▶ SGD-GD finds a O(ϵ)-biased SPS solution.

▶ Bias level is further improved to O(ϵ2)-biased when the gradient
is exact.

▶ The asymptotic performance of SGD-GD is sensitive to the
stochastic gradient’s noise variance.
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Key Lemma I: Descent Lemma

Lemma 1. Under A1, 2. Suppose that the step size satisfies

sup
t≥1

γt ≤ 1/(L(1 + σ2
1)),

then for any t ≥ 0, the iterates generated by SGD-GD satisfies

γt+1

2
∥∇1J(θt,θt)∥2 ≤ J(θt,θt)− Et[J(θt+1;θt)]︸ ︷︷ ︸

:=A1

+
Lσ2

0

2
γ2
t+1. (4)

▶ For sufficiently small γt and when θt is not SPS, (4) implies the descent
relation

Et[J(θt+1;θt)] ≤ J(θt;θt)

▶ Motivated by above relation, we consider J(θt;θt) as the time-varying
Laypunov function.

E[A1] = E[J(θt;θt)− J(θt+1;θt+1)] + E[J(θt+1;θt+1)− J(θt+1;θt)]︸ ︷︷ ︸
residual

▶ Question: How to bound residual term?
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Key Lemma II: Bound Distribution Shift
Recall the distribution smooth assumption: d(D(θ),D(θ′)) ≤ ϵ ∥θ − θ′∥.

▶ W1: ϵ sensitivity W1(D(θ),D(θ′))≤ϵ ∥θ − θ′∥.
▶ W2: L0 smoothness w.r.t. sample |ℓ(θ; z)− ℓ(θ; z′))| ≤ L0 ∥z − z′∥.

W1 is standard, but W2 can be difficult to verify.

▶ C1: ϵ sensitivity δTV(D(θ1),D(θ2)) ≤ ϵ ∥θ − θ′∥.
▶ C2: bounded loss supθ∈Rd,z∈Z |ℓ(θ; z)| ≤ ℓmax.

C1 is slightly strengthened from W1. But C2 covers more loss functions.

▶ Lemma 2. For any θ,θ1,θ2 ∈ Rd, it holds

|J(θ;θ1)− J(θ;θ2)| ≤ L̃ϵ ∥θ1 − θ2∥ (5)

Under W1 & 2, L̃ = L0, Under C1 & 2, L̃ = 2ℓmax.

Combined Lemmas 1 & 2, we can obtained the Theorem 1.
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Main Result (II) – Extension: Lazy Deployment with SGD

As inspired by Mendler-Dünner et al. (2020), lazy deployment scheme is
described as following,

θt,k+1 = θt,k − γ∇ℓ(θt,k;Zt,k+1), where Zt,k+1 ∼ D(θt),

θt+1 = θt+1,0 = θt,K , k = 0, ...,K − 1.
(6)

Theorem 2. Under A1-3, and suppose that supθ∈Rd,z∈Z ∥∇ℓ(θ; z)∥ ≤ G.

Set γ = 1/(K
√
T ). For sufficient large T , it holds that

E
[
∥∇1J(θT;θT)∥2

]
≲

∆0√
T
+

Lσ2
0

K
√
T
+
LG2

T
+
L̃ϵ

K

(√
Kσ0+

√
(K + σ2

1)L̃ϵ

)
.

After simplification, we have

E
[
∥∇1J(θT;θT)∥2

]
≲ O

(
1√
T

+
L̃ϵ√
K

)
(7)

▶ The lazy deployment scheme (6) finds a bias-free SPS solution when
T → ∞,K → ∞.
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Numerical Experiments - Synthetic Data

Synthetic Data with Linear Model. We consider a binary classification
problem with linear model,

ℓ(θ; z) := (1 + exp(c · y⟨x |θ⟩))−1
+ (β/2) ∥θ∥2 ,

for small regularization β > 0, ℓ(·; z) is smooth but non-convex.

Generating data distribution: Do ≡ {(xi, yi)}mi=1 with d-dimention
feature xi ∼ U [−1, 1]d and label yi = sgn(⟨xi |θo⟩) ∈ {±1}, such that
θo ∼ N (0, I).

Distribution Shift: For any θ ∈ Rd, D(θ) is a uniform distribution on m
shifted samples {(xi − ϵLθ, yi)}mi=1, where ϵL > 0 controls shift
magnitude.

Parameter Set. m = 800, d = 10, c = 0.1, β = 10−3, ϵ ∈ {0, 0.1, 0.5, 2}.
For SGD-GD, batch size: b = 1, stepsize: γt = γ = 1/

√
T with T = 106.
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Simulation Result - Synthetic Data
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▶ From left figure, After a rapid transient stage, the SPS stationarity
∥∇J(θt;θt)∥2 saturates and stay around a constant level, indicating
that the SGD-GD converges to a biased-SPS solution. ϵL ↑ leads to an
increased bias. → Theorem 1 ✓

▶ In middle figure, we evaluate the performance of the trained classifier θt
in terms of the performative risk value V (θt).

▶ In right figure, we compare the lazy deployment with K ∈ {5, 10} and
stepsize γ = 1/(K

√
T ). K ↑ leads to lower bias. → Theorem 2 ✓
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Numerical Experiments - Real Data
Spam Email Classification with Neural Network(NN) Model

▶ Dataset: Hopkins et al. (1999) with m = 4601 samples, d = 48 features.
Training/test set: 8:2. Label y ∈ {0, 1} (0 is for not spam, 1 for spam).
Denote unshifted data as Do = {(x̄i, ȳi)}mi=1.

▶ Problem formulation: Consider the regularized binary cross entropy loss:

ℓ(θ; z) ≡ ℓ̃(fθ(x); y)

= −y log(fθ(x))− (1− y) log(1− fθ(x)) + (β/2) ∥θ∥2 , (8)

where fθ(x) is the NN classifier.

▶ Distribution Shift: drawn new sample via maximizing the utility function:

x = argmaxx′ U(x′; x̄,θ) := −fθ(x
′)− 1

2ϵNN
∥x′ − x̄∥2 , (9)

to get z ≡ (x, ȳ) ∼ D(θ). In practice, we take approx. x ≈ x̄− ϵNN∇xfθ(x̄).

▶ NN Classifier: three fully-connected layers with tanh activation and a
sigmoid output layer,

fθ(x) = Sigmoid
(
θ⊤
(1) · tanh(θ⊤

(2) · tanh(θ⊤
(3)x))

)
,

where θ(i) := [w(i); b(i)] ∈ R3421 concatenates the weight and bias.
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Simulation Result - Real Data
▶ Settings: ϵNN ∈ {0, 10, 100}, batch size b = 8. For SGD-GD:

γt = γ = 200/
√
T , Lazy deployment, γ = 200/(K

√
T ) with T = 105.
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Observation:

▶ From left fig, SGD-GD converges to a near SPS solution.

▶ From middle & right fig, lazy deployment performs relatively better
than SGD-GD as ϵNN ↑.
When ϵ : 10 7→ 105, no. sample for three algo: ×4, ×3, ×2.4.

▶ Recall from (7), E[∥∇1J(θT;θT)∥2] = O
(

ϵ√
K

)
and ϵ ∝ ϵNN.
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Conclusions

▶ We provides the first study on the performative prediction
problem with smooth but possibly non-convex loss.

▶ A stationary performative stable (SPS) condition which is the
counterpart of performative stable condition used with strongly
convex loss, is developed to analyze nonconvex case.

▶ We provide the convergence of greedy deployment and lazy
deployment schemes with SGD under nonconvex case.

▶ Numerical experiments validate our analysis.

▶ Limitation/ongoing work: Nonconvex analysis based on non-iid
data?

Questions & Comments?
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