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Decentralized Optimization

I Distributed optimization uses a set of networked computers,
called agents, to solve optimization problems.

I Challenge: an algorithm running on one computer does not meet
the expected performance.

I Approaches:
I upgrade CPU, GPU, memory... §
I use more computers, decompose the problem, run a decentralized

optimization algorithm. More favorable (often the only)

I Examples: wireless sensor network, applications of real-time
decisions made based on agents’ local data.
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Concrete Example - Clinical Data

I Each agent (hospital) wishes
to learn about the treatment
of a certain medical condition.

I But no previous experience
(i.e., existing samples) in its
local database.

I Clinical data are privacy sensitive =⇒ shared directly 7.

I Small amout of Data =⇒ consensus design 1

I Candidate algorithm: Decentralized SGD (only requiring sharing
the model among neighboring agents)

I More complex factors for local agents...

1also used in federated learning.
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Local Performativity

I When predictions are used to
support decisions, the
distribution of future
observations is altered.

I But decision (classifier) can cause distribution shift in the world.

I Classical Supervised Learning: static world with i.i.d. data.

I Performative Prediction: stochastic optimization problem
whose data distribution depends on the decision variable.

I Clinical Data Example: After deploying a model, patients may
overstates their symptoms to receive better treatment.
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Performative Prediction for Single Agent

I Data: z = (x, y) ∼ D(θ).

I Goal: minimize performative risk

min
θ
L(θ) := Ez∼D(θ)[`(z; θ)]

I Inspired by [Perdomo et al., 2020], use D(θ) to capture
distribution shift (agents’ response) of z due to learner’s state.

I Two different solutions to performative prediction:

θPO ∈ arg min
θ∈Rd

Ez∼D(θ)`(θ; z), θPS = arg min
θ′∈Rd

Ez∼D(θPS)[`(θ
′; z)].

I Agnostic Setting: No extra knowledge on local data, like
distribution... =⇒ θPS is the best to hope for.

How should the agent (local hospital) do?

I SGD/GD on `(z; θ) with z ∼ D(θ) 2

2[Perdomo et al., 2020, Mendler-Dünner et al., 2020].
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Finding θPS

I [Mendler-Dünner et al., 2020] considers an SGD-like recursion:

Sampling : zk+1 ∼ D(θk)

Update : θk+1 = θk − γk+1∇`(θk; zk+1),

i.e., a greedy deployment scheme. Assume that3:
I A1: `(θ; z) is µ-strongly convex.
I A2: ∇`(θ; z) has L-Lipschitz gradient.
I A3: ε−sensitivity: W1(D(θ),D(θ′)) ≤ ε‖θ − θ′‖,∀ θ, θ′

I Convergence Region: ε < µ/L.

I Issue in multi-agent case: sensitive agent εi ≥ µ/L.

When will the problem admit a stable and consensual solution? If so,

how fast does it take for to converge to such solution?

3A1-A3 are mild - also in [Mendler-Dünner et al., 2020].
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Multi-agent Performative Prediction (Multi-PfD)

1. n agents case: undirected and connected
graph G = (V,E).

2. Mixing matrix W ∈ Rn×n+ on G, doubly
stochastic.

3. Di(θi): Agent i draws samples from ith
population of users.

4. Heterogeneous data: Di(θ) 6= Dj(θ′),
i 6= j, even if θ = θ′.

I Goal: find a common decision vector θ ∈ Rd in a collaborative fashion
that minimizes the average of local losses.

minθi∈Rd, i=1,...,n
1
n

∑n
i=1 EZi∼Di(θi)

[
`(θi;Zi)

]
(1)

s.t. θi = θj , ∀ (i, j) ∈ E.

I Define Multi-PS solution:

θPS =M(θPS) := arg minθ∈Rd
1
n

∑n
i=1 EZi∼Di(θPS)[`(θ;Zi)]
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DSGD-GD for Pref. Pred.

Decentralized SGD-Greedy Deployment (DSGD-GD)

(Phase 1) Zt+1
i ∼ Di(θti)

(Phase 2) θt+1
i =

∑n
j=1Wijθ

t
j − γt+1∇`(θti ;Z

t+1
i ),

I ∇`(θti ;Z
t+1
i ): the gradient taken w.r.t. θti , and the samples Zt+1

i

at each agent are iid.

I Extension of Greedy Deployment scheme over decentralized
scenario.

I Contributions:
I Provide sufficient and necessary condition for the existence and

uniqueness of the Multi-PS solution.
I Prove DSGD-GD converges to the Multi-PS solution (O(1/t)).
I Conduct numerical experiments on synthetic/real data.
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Assumptions

A4. Doubly stochastic mixing matrix W
Exist a constant ρ ∈ (0, 1] such that

∥∥W − (1/n)11>
∥∥
2
≤ 1− ρ.

A5. σ-perturbation with sampled gradient

EZi∼Di(θ)[‖∇`(θ;Zi)−∇fi(θ;θ)‖2] ≤ σ2(1 +
∥∥θ − θPS∥∥2).

A6. Heterogeneity ς

‖∇f(θ;θ)−∇fi(θ;θ)‖2 ≤ ς2(1 +
∥∥θ − θPS∥∥2), ∀ θ ∈ Rd.

I A6 also implies maxi=1,...,n ‖∇fi(θPS ;θPS)‖2 ≤ ς2.
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Main Result - Existence and Uniqueness

Define the map M : Rd → Rd

M(θ) = arg minθ′∈Rd
1
n

∑n
i=1 Ezi∼Di(θ)[`(θ

′; zi)] (2)

Proposition 1 Existence and Uniqueness of θPS

Under A1-A3,

I If εavg < µ/L, then the map M(θ) is a contraction with the unique
fixed point θPS =M(θPS).

I If εavg ≥ µ/L, then there exists an instance of (2) where
limT→∞

∥∥MT (θ)
∥∥ =∞.

I Single agent case: ε < µ/L vs Mult. agent case: εavg < µ/L.

I DSGD-GD converges even if εi exceed µ/L as long as εavg < µ/L.

I Benefit of consensus: improved robustness to node failure and local
distribution shifts.
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Main Result - Convergence of DSGD-GD

Theorem 1 [Li et al., 2022]

Under A1-A6. Let εavg <
µ

(1+δ)L and with non-increasing and sufficient

small step sizes, for any k ≥ 1, there exists C where it holds

E[‖θt − θPS‖2] .
∏t
i=1

(
1− µ̃γi

2

)
+ L(σ2+ς2)

nδµ̃ρ2εavg
γ2t︸ ︷︷ ︸

Transient

+ σ2

nµ̃γt︸ ︷︷ ︸
Fluctuation

,

1
n

∑n
i=1 E

[
‖θti − θ

t‖2
]
.
(
1− ρ

2

)t
+ (σ2+ς2)

ρ2 γ2t ,

where δ is a parameter to be determined, µ̃ := µ− (1 + δ)εavgL.

I Convergence needs εavg < µ/L if δ = 0.

I Consensus error: ‖Θt
o‖2F := 1

n

∑n
i=1 E

[
‖θti − θ

t‖2
]
∼ O(γ2t )

I Take γt = a0
a1+t

for some a0, a1 > 0, E[‖θt − θPS‖2]→ 0 as O(1/t),

while the consensus error → 0 as O(1/t2).

I Fluctuation term that only depends on the averaged noise variance
O(σ2/n). Decays at rate of O(γt).
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Other Contributions
I B-connected graph: Extend our analysis of DSGD-GD on time-varying

graph.

I G(t) = (V,E(t)) be a simple, undirected graph, but possibly not
connected. Weighted adjacency matrix W (t).

I Time-varying graph sequence {G(t)}t≥1 = {(V,E(t))}t≥1 is
B-connected.

I Exists B such that undirected graph (V,E(t) ∪ · · ·E(t+B−1)) is
connected.

A4′-Time-varying doubly stochastic mixing matrix

For any t ≥ 1, the mixing matrix W (t) ∈ Rn×n satisfies:

1. (Topology) W
(t)
ij = 0 if (i, j) /∈ E(t).

2. (Doubly stochastic) W (t)1 = (W (t))>1 = 1.

3. (Fast mixing) Let A(t) := W (t) − 1
n
11>, there exists ρ̄ ∈ (0, 1] such that

‖A(t+B−1) · · ·A(t)‖2 ≤ 1− ρ̄.

I Extend our analysis to the scenario when the local distributions Di(·)
are simultaneously influenced by other agents in the network.
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Simulation-Synthetic Data

Multi-agent Gaussian Mean Estimation:
Consider n = 25-agent right graph and a quadratic loss

`(θi;Zi) = (θi − Zi)2/2

Set the local distributions as Di(θi) ≡ N (z̄i + εiθi, σ
2), where z̄i is the

mean value to be estimated.

I Parameters: µ = 1, L = 1, γt = a0
(a1+t)

.

I Multi-PS sol. θPS =
∑n
i=1 z̄i/[n(1− εavg)], if 0 < ε̄ = εavg < 1.

I While θPS does not exist if εavg ≥ 1.

14 / 20



Simulation-Synthetic Data (Cont’d)
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(left) when εavg < 1 converge,

(right) when εavg > 1, diverge.

}
=⇒ Prop. 1 3

(left) |θ̃t|2 decays at O(1/t),

(middle) ‖Θt
o‖2 decays at O(1/t2)

}
=⇒ Thm 1 3

I (dash-dotted) when εi = 1.01 > 1, agent i disconnected and perform
greedy deployment individually, its performative risk fi(θ

t
i ;θ

t
i) diverges

as t→∞.

I With consensus, performative risk of whole system n−1
∑n
i=1 fi(θ

t
i ;θ

t
i)

can be stable.
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Example-Binary Classification Problem

Recall that

min
θi∈Rd, i=1,...,n

1

n

n∑
i=1

EZi∼Di(θi)

[
`(θi;Zi)

]
s.t. θi = θj , ∀ (i, j) ∈ E.

Take the logistic regression function as loss function, i.e.,

`(θ;Zi) = log
(
1 + exp(〈Xi |θ〉)

)
− Y 〈Xi |θ〉+ β

2 ‖θ‖
2,

where β > 0 is a regularization parameter and Zi = (Xi, Yi) is the given
data tuple.

Linear utility function for Zi = (Xi, Yi) ∼ Di(θi) is given by

Xi = arg maxX̂∈Rd

{
〈θi | X̂〉− 1

2εi
‖X̂−X‖2

}
, Yi = Y with (X, Y ) ∼ Do

i ,

for some εi > 0, where Do
i is a base data distribution of the ith

population.

I the closed form solution is Xi = X + εiθi.
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Simulation-Real Data

I Multi-agent spam classification task based on spambase, a dataset
[Hopkins, 1999]. Adopt Example 1 and simulate a scenario with 25
servers on a ring graph.

I Training: Test Data = 3 : 1. Each server has access to 1/25 training
data.

I Goal: find a common spam filter classifier via logistic loss.

I Strategic behavior of users: Xi are adapted to θi through maximizing a
linear utility function.

I Sensitivity parameters are set as εi ∈ {0.4εavg, 0.45εavg, . . . , 1.6εavg}
with ε̄ = εavg ∈ {0.01, 0.1, 1}.
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Simulation-Real Data (Cont’d)
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†DSGD (dashed lines): non-performative opt. sol. on the shifted dataset.

I ∇f(θPS ;θPS) = 0, thus gradient norm measures the gap to θPS .

I (left) and (middle), DSGD-GD converges to the Multi-PS solution and
reaches consensus at the rates O(1/t),O(1/t2), respectively.

I (right) Accur. ↓ as εavg ↑, DSGD-GD achieves better accuracy than
DSGD.
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Conclusions

I Multi-agent performative prediction problem framework & extend
analysis in [Perdomo et al., 2020], [Mendler-Dünner et al., 2020].

I Show that the MSE between DSGD-GD iterates and performative
stable solution θPS converges at O(1/t).

I Necessary and sufficient condition on the sensitivity of decision
dependent data distributions for the existence and uniqueness of
the Multi-PS solution.

I Numerical experiments validate our analysis.

Future Works:

I Multi-agent system based on non-iid data?
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