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Multi-agent Stochastic Optimization

▶ Consider tackling the optimization problem on a network with n
agents:

min
θ∈Rd

f(θ) :=
1

n

n∑
i=1

fi(θ), (1)

▶ Applications: decentralized
ML, control, etc.

▶ fi(θ) = EZi∼Bi
[ℓ(θ;Zi)] is a

smooth (possibly non-convex)
obj. function of agent i.

▶ Bi is the data distribution at
the ith agent.

▶ Algorithms: decentralized stochastic gradient (DSGD)
[Sundhar Ram et al., 2010], GT-HSGD [Xin et al., 2021], D2

[Tang et al., 2018], GNSD [Lu et al., 2019], many others ...

2 / 15



Decentralized SGD

Let W be a doubly stochastic matrix, the DSGD does

θt+1
i =

∑n
j=1Wijθ

t
j︸ ︷︷ ︸

Consensus

− γt+1∇ℓ(θt
i ;Z

t+1
i )︸ ︷︷ ︸

Local Update

, i ∈ [n] (2)

▶ Across the network, it uses n samples per iteration – Zt+1
i ∼ Bi.

▶ [Lian et al., 2017] showed DSGD can achieve linear speedup –
its performance approaches SGD with large batch, e.g.,

θt+1 = θt − γt+1(1/n)
∑n

i=1∇ℓ(θt;Zt+1
i )←− batch size n

▶ This speedup only holds asymptotically when t→∞.

▶ Transient time (informal) := min. no. of iterations required
such that DSGD can achieve comparable performance as CSGD.
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Standard Assumptions

A1. Mixing matrix W

Doubly stochastic, W1 = W⊤1 = 1. ∃ρ ∈ (0, 1] and a projection
matrix U ∈ Rn×(n−1) such that

∥∥U⊤WU
∥∥
2
≤ 1− ρ.

A2. L-Lipschitz continuous gradient
∥∇fi(θ′)−∇fi(θ)∥ ≤ L∥θ′ − θ∥, ∀ θ′,θ ∈ Rd.

A3. Bounded variance σ
Ezi∼Bi

[∥∇ℓ(θ; zi)−∇fi(θ)∥2] ≤ σ2.

A4. Data Heterogeneity ς
∥∇f(θ)−∇fi(θ)∥ ≤ ς, ∀ θ ∈ Rd.
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Convergence of Plain DSGD

Theorem 1 (Basic Result) [Lian et al., 2017]

Under A1–4, assume γt is sufficiently small, denote D := f(θ
0
)− f⋆. For

any T ≥ 1, it holds

E
[∑T−1

t=0 γt+1∥∇f(θ
t
)∥2

]
≲ D+Lσ2

n

∑T−1
t=0 γ2

t+1+
L2(ς2+σ2)

ρ2

∑T−1
t=0 γ3

t+1.

▶ For γt+1 = 1/
√
T , let T be chosen uniformly from {0, . . . , T − 1},

E
[
∥∇f(θT

)∥2
]
= O

( (
D+ Lσ2/n

)
T−1/2︸ ︷︷ ︸

∝D+n−1Lσ2 CSGD term

+ L2(ς2+σ2)
ρ2 T−1︸ ︷︷ ︸

network depen.

)

▶ Transient time: Ttrans = Θ
(
n2/ρ4

)
– undesirable for large scale network

and sparse network1.

▶ Remedy: sophisticated algorithms, e.g., with gradient tracking, variance
reduction, etc. [Lu et al., 2019, Huang and Pu, 2022] – is it necessary?

1E.g.: Ring graph: ρ = Θ(1/n2), 2d-torus graph: ρ = Θ(1/n).
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Observation

▶ DSGD sometimes performs almost as good as centralized SGD.
Why?
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▶ Possible Reason: homogeneous data (with Bi ≈ Bj) are
common in applications.

▶ Previous analysis (Theorem 1) does not take this into account.
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Motivating Example

Question: Can DSGD (with homo. data) achieve fast
convergence with a shorter transient time ?

▶ Consider a special case of (1),

fi(θ) = (1/2)θ⊤Aθ + θ⊤b, (3)

where A is PD, b is fixed vector (shared among agents).

▶ ∇f(θ) = ∇fi(θ)⇒ ς = 0 ←− Homogeneous data.

▶ Consider stochastic gradient map: zi ≡ b̃i ∼ Bi ≡ B satisfies

∇ℓ(θ; zi) = Aθ + b̃i, E[b̃i] = b, E[∥b̃i − b∥2] ≤ σ2 (4)

⇒ E[∥∇ℓ(θ; zi)−∇fi(θ)∥2] ≤ σ2 ⇒ A3 ✓

▶ Note: agents still draw independent and different samples.
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Motivating Example

▶ Consider a special case of (1),

fi(θ) = (1/2)θ⊤Aθ + θ⊤b, (3)

where A is PD, b is fixed vector (shared among agents).

▶ The averaged iterate recursion of DSGD is:

θ
t+1

= θ
t − γt+1

(
Aθ

t
+
∑n

i=1 b̃i/n︸ ︷︷ ︸
unbiased estimate of ∇f(θ

t
)

)

variance: E[∥Aθ
t
+ n−1

∑n
i=1 b̃i −∇f(θ

t
)∥2] ≤ n−1σ2.

▶ The above is identical to running CSGD with n samples per iter.

▶ Transient time: 0.

Does the observation generalize to nonlinear function?
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Additional Assumptions

A5 Lipschitz continuous Hessian (High Order Smoothness)

∥∇2fi(θ
′)−∇2fi(θ)∥ ≤ LH∥θ′ − θ∥, ∀ θ,θ′ ∈ Rd.

A6 High-order heterogeneity ςH

∥∇2f(θ)−∇2fi(θ)∥ ≤ ςH , ∀ θ ∈ Rd.

A7 Unbiased gradient & 4th-order moment bound

Ez∼Bi
[∥∇ℓ(θ; z)−∇fi(θ)∥4] ≤ σ4.

▶ Note that ς = 0 =⇒ ςH = 0.

▶ Our notion of data homogeneity only requires ςH ≈ 0 —
quadratic (or higher order) terms of fi, f to be similar.
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Main Theorem

Theorem 2 (Our Bound)

Under A1–7. Assume {γt}t≥1 is suff. small. For any T ≥ 1, it holds

E
[∑T−1

t=0 γt+1∥∇f(θ
t
)∥2

]
≲ D+ Lσ2

n

∑T−1
t=0 γ2t+1 (4)

+
ς2H(ς2+σ2)

ρ2
∑T−1

t=0 γ3t+1 +
L2
H
ρ4

(σ4 + 4ς2)
∑T−1

t=0 γ5t+1

▶ Set γt+1 = 1/
√
T and T be chosen uniformly in {0, . . . , T − 1}.

Suppose that ςH = 0, it holds

E
[
∥∇f(θT

)∥2
]
=O

(
(D+ Lσ2/n)T−1/2︸ ︷︷ ︸
∝D+n−1Lσ2,CSGD term

+
L2
H(σ4+ς4)

ρ4/n
T−2︸ ︷︷ ︸

network depen. term

)

▶ Transient time is now T = Θ
(
n4/3

ρ8/3

)
. If ςH ≈ 0, the above still

holds approximately.
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More on the Main Theorem

▶ Improved transient time for DSGD:

Θ

(
n2

ρ4

)
−→ Θ

(
n1.333

ρ2.667

)
[Lian et al., 2017] Our analysis

Significant improvement when n≫ 1, ρ≪ 1.

▶ Main technique: Approximation error of gradient map ∇fi is:
Ei(θ′;θ) := ∇fi(θ′)−∇fi(θ)−∇2fi(θ)(θ

′ − θ).

Under A5, it holds that the following quadratic bound,

∥Ei(θ′;θ)∥ ≤ LH

2
∥θ′ − θ∥2, ∀ θ′,θ ∈ Rd.

rather than applying Lip-gradient to obtain a linear bound.
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Simulation Setup

▶ Task: binary classification using SVM.

▶ Loss: a non-convex sigmoid function on a 12-agents ring graph,
where Wii = 0.9.

ℓ(θ; z) =
1

1 + exp(y⟨x |θ⟩)
+

β

2
∥θ∥2 ,

▶ Synthetic Dataset: with different ground truth θo,i, generate

xij ∼ U [−1, 1]5, yij = sign(
〈
xij |θo,i

〉
).

▶ Benchmarks: CSGD, DSGD with homogeneous data
(Homo-DSGD) and heterogeneous data (Hete-DSGD).
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Simulation Result

▶ Observation: DSGD always
approach the same steady state
convergence behavior as CSGD as
t→∞ =⇒ Theorem 1 ✓.

▶ With homogeneous data, DSGD
matches the performance of CSGD
with a much smaller transient time
than the case with heterogeneous
data. =⇒ Theorem 2 ✓
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Figure 1: Compare the norm of

gradient ∥∇f(θt
)∥2 against

the number of iteration t. The
shaded region indicate the
90% confidence interval.
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Conclusion

▶ Plain DSGD algorithm still achieves fast convergence when the
data distribution across agents are similar to each other.

▶ Key Obs.: Exploiting high-order smoothness gives tightened
result.

▶ Our theoretical results are supported by numerical experiment.

▶ Limitation/ongoing work: the speedup happens only with θ
t

instead of the local variables θt
i .

Questions & Comments?
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