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Multi-agent Stochastic Optimization

» Consider tackling the optimization problem on a network with n
agents:

1 n
i 0) . =— (0), 1
mnin f(6) n;f (0) (1)
> Applications: decentralized 2.

ML, control, etc.
> fl(o) = EZiNBi [5(0, Zz)] is a
smooth (possibly non-convex)
obj. function of agent 1. : ‘
> B; is the data distribution at A gl
the ith agent.

» Algorithms: decentralized stochastic gradient (DSGD)
[Sundhar Ram et al., 2010], GT-HSGD [Xin et al., 2021], D?
[Tang et al., 2018], GNSD [Lu et al., 2019], many others ...
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Decentralized SGD

Let W be a doubly stochastic matrix, the DSGD does

0/ = > =1 Wijeé — Ye+1VL(0L; ZY), i € [n] (2)
Consensus Local Update

P Across the network, it uses n samples per iteration — Zf“ ~ B;.

» [Lian et al., 2017] showed DSGD can achieve linear speedup —
its performance approaches SGD with large batch, e.g.,

0"t = 0! — ;1 (1/n) S, VE(O; ZY) «— batch size n

» This speedup only holds asymptotically when t — oco.

» Transient time (informal) := min. no. of iterations required
such that DSGD can achieve comparable performance as CSGD.
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Standard Assumptions

Al. Mixing matrix W

Doubly stochastic, W1 =W 1 =1. 3p € (0,1] and a projection
matrix U € R"*("~1) such that |[UTWU|, <1 - p.

A2. L-Lipschitz continuous gradient
IVfi(6") = VFi(0)ll < L6’ — 6], v 6,6 cR”.

A3. Bounded variance o

E..~g [IVA(0; 2:) — V£i(0)|?] < o°.

A4. Data Heterogeneity ¢
IVf(8) = V£i(B) <<, VO R
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Convergence of Plain DSGD

Theorem 1 (Basic Result) [Lian et al., 2017]

Under A1-4, assume ~; is sufficiently small, denote D := f(@o) — f*. For
any T > 1, it holds

= 0.
E |05 e IVF@)IF] $ D+ T a2 + G 2.

» For v,11 = 1/V/T, let T be chosen uniformly from {0,...,T — 1},
E [||Vf(§T)H2} - o( (D + Lo?/n)T—/2 4 Bl 4a )

xD+4+n=1Lo? CSGD term network depen.

> Transient time: Tirans = © (n?/p*) — undesirable for large scale network
and sparse network!.

» Remedy: sophisticated algorithms, e.g., with gradient tracking, variance
reduction, etc. [Lu et al., 2019, Huang and Pu, 2022] — is it necessary?

'E.g.: Ring graph: p = ©(1/n?), 2d-torus graph: p = ©(1/n).
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Observation

» DSGD sometimes performs almost as good as centralized SGD.
Why?

10* —— Centralized SGD
— Decentralized SGD

V@1

5
iteration ¢ x10°

» Possible Reason: homogeneous data (with B; ~ Bj) are
common in applications.

» Previous analysis (Theorem 1) does not take this into account.
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Motivating Example

Question: Can DSGD (with homo. data) achieve fast
convergence with a shorter transient time ?

» Consider a special case of (1),
fi(0) = (1/2)6T A6 + 6", (3)
where A is PD, b is fixed vector (shared among agents).

» Vf(0)=Vfi(B) = ¢=0+— Homogeneous data.

» Consider stochastic gradient map: z; = lN)Z ~ B; = B satisfies

VIO 2) = A0 +b;, Eb]=b, E[|b;—b|}]<s> (4)

= E[||VL(O;2) — Vi(0)|*] <o?= A3V

> Note: agents still draw independent and different samples.
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Motivating Example

» Consider a special case of (1),
fi(0) = (1/2)0T A0 + 0 "b, (3)
where A is PD, b is fixed vector (shared among agents).
» The averaged iterate recursion of DSGD is:
o9 - Ve ( AQ' + doic1 bi/n )

6
unbiased estimate of Vf(@t)

variance: ]E[||A§t +n S0 b; — 50 )H ] <nlo?

» The above is identical to running CSGD with n samples per iter.

» Transient time: 0.

Does the observation generalize to nonlinear function?
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Additional Assumptions

Ab Lipschitz continuous Hessian (High Order Smoothness)
IV2£;(0') — V2£;(0)| < Ly |0’ — 0], V¥ 6,0 € R™.

A6 High-order heterogeneity sz
IV2£(8) — V2£i(0)]| <<u, V 8 € R™.

A7 Unbiased gradient & 4*"-order moment bound
E.~8,[[V(8; 2) — Vfi(9)||"] < o*.

» Note that ¢ =0 = ¢y = 0.

» Our notion of data homogeneity only requires ¢z ~ 0 —
quadratic (or higher order) terms of f;, f to be similar.
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Main Theorem

Theorem 2 (Our Bound)
Under A1-7. Assume {v;}¢>1 is suff. small. For any T' > 1, it holds

B[S Vi@ >||2}<D+ VAL O

+
+ SH(C o Zt 0 ’Yt+1 + (‘7 + 4¢? )Zt 0 %4—1

» Set v;.1 = 1/+/T and T be chosen uniformly in {0,..., T — 1}.
Suppose that ¢z = 0, it holds

E [HVJC(ET”P} :O<(D+L02/n) T-1/2 4 %T 2 )
—

network depen. term

xD+n~1Lo2,CSGD term

. . . 4/3 .
» Transient time is now 7' = © (%) If ¢ = 0, the above still

holds approximately.
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More on the Main Theorem

» Improved transient time for DSGD:

2 1.333
© <n4) — © <n2667>
p p*
[Lian et al., 2017] Our analysis
Significant improvement when n > 1, p < 1.

» Main technique: Approximation error of gradient map V f; is:
£(0';0) :=V1i(0') —Vfi(0)—V1i(6)(0 - 0).
Under Ab, it holds that the foIIowing quadratic bound,

€05 0)] < 22 H9’ 0||>, v 6,6 € R".

rather than applying Lip—gradlent to obtain a linear bound.
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Simulation Setup

» Task: binary classification using SVM.

» Loss: a non-convex sigmoid function on a 12-agents ring graph,
where W;; = 0.9.

1
~ 1+exp(y(z]6))
» Synthetic Dataset: with different ground truth 6, ;, generate

2l ~ U110,y = sign((z | 6,4))-

5
0(6;2) + 2 le)?,

» Benchmarks: CSGD, DSGD with homogeneous data
(Homo-DSGD) and heterogeneous data (Hete-DSGD).
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Simulation Result

» Observation: DSGD always
approach the same steady state
convergence behavior as CSGD as
t — 00 = Theorem 1 V.

» With homogeneous data, DSGD
matches the performance of CSGD
with a much smaller transient time
than the case with heterogeneous
data. = Theorem 2 v/

10" —CSGD
~——Homo-DSGD
— Hete-DSGD

IV£@)]>

Figure 1: Compare the norm of
gradient ||Vf(§t)\|2 against
the number of iteration t. The
shaded region indicate the
90% confidence interval.
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Conclusion

» Plain DSGD algorithm still achieves fast convergence when the
data distribution across agents are similar to each other.

> Key Obs.: Exploiting high-order smoothness gives tightened
result.
» Our theoretical results are supported by numerical experiment.

> Limitation/ongoing work: the speedup happens only with o'
instead of the local variables 6.

Questions & Comments?

13/15



References |

a Huang, K. and Pu, S. (2022).
Improving the transient times for distributed stochastic gradient methods.
IEEE Transactions on Automatic Control.

ﬁ Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W., and Liu, J. (2017).
Can decentralized algorithms outperform centralized algorithms? a case study for
decentralized parallel stochastic gradient descent.

In NeurlPS.

[@ Lu, S., Zhang, X., Sun, H., and Hong, M. (2019).

Gnsd: A gradient-tracking based nonconvex stochastic algorithm for

decentralized optimization.
In 2019 IEEE Data Science Workshop (DSW), pages 315-321. IEEE.

ﬁ Sundhar Ram, S., Nedi¢, A., and Veeravalli, V. V. (2010).
Distributed stochastic subgradient projection algorithms for convex optimization.
JOTA, 147(3):516-545.

a Tang, H., Lian, X., Yan, M., Zhang, C., and Liu, J. (2018).

d?: Decentralized training over decentralized data.
In International Conference on Machine Learning, pages 4848-4856. PMLR.

14/15



References |l

[@ Xin, R., Khan, U., and Kar, S. (2021).
A hybrid variance-reduced method for decentralized stochastic non-convex
optimization.
In ICML.

15/15



