Stochastic Optimization Schemes for Performative Prediction with Nonconvex Loss

Informs International Meeting 2025

Qiang Li

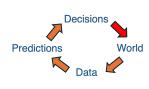
Supervisor: Prof. Hoi-To Wai

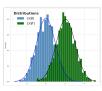
Dept of Systems Engineering and Engineering Management, The Chinese University of Hong Kong

July 21, 2025

Motivation: Data Distribution May Shift

Performative Prediction (PP): stochastic optimization problem whose data distribution depends on the decision variable.





- Learning in economic or societal environment is causative: the models aim to predict can be influenced by the models themselves.
 - Example: self-fulfilling or self-negating predictions.
- **Example (I)**: Spam Email Detection
 - An email server designs a filter to block spam.
 - ▶ Spammers *adapt to bypass* the filter and continue distributing spam or malware.
- Example (II): Traffic Congestion
 - Google Maps suggests the fastest route based on current traffic conditions.
 - ▶ Many users follow the suggestion, the recommended route becomes congested.
- Related topic: Stackberg games (Brückner and Scheffer, 2011).

From Practice to Mathematical Model

- ▶ Performative Prediction: Data $Z = (x, y) \sim \mathcal{D}(\theta)$
- **Formulation**: minimize the performative risk

$$\min_{\boldsymbol{\theta}} V(\boldsymbol{\theta}) := \mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta})}[\ell(\boldsymbol{\theta}; Z)]$$

- **Example** of $\mathcal{D}(\boldsymbol{\theta})$: base distribution $\mathcal{D}^o \equiv \{(x_i, y_i)\}_{i=1}^m$, (x_i, y_i) is feature label pair, $\mathcal{D}(\boldsymbol{\theta}) = \{(x_i \epsilon \boldsymbol{\theta}, y_i)\}_{i=1}^m$, where ϵ is shift magnitude.
- Perdomo et al. (2020) uses $\mathcal{D}(\theta)$ to capture the distribution shift (population's response of Z) due to the learner's state θ .
- How should the learner deal with performativity?
 - Agnostic Setting: SGD with greedy deployment on $\ell(\theta; z)$ with $z \sim \mathcal{D}(\theta)$, e.g., Perdomo et al. (2020), Mendler-Dünner et al. (2020).
 - lacktriangle Requires no extra knowledge on $V(oldsymbol{ heta})$ and population ...
 - Proactive Setting: Estimate true gradient of $\nabla V(\theta)$, e.g., Izzo et al. (2021), Miller et al. (2021).
 - Needs extra knowledge on $V(\theta)$ and population utility function.

SGD with Greedy Deployment (Mendler-Dünner et al., 2020)

► Two different solutions to performative prediction:

$$\boldsymbol{\theta}_{PO} \in \underset{\boldsymbol{\theta} \in \mathbb{R}^d}{\arg \min} \mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta})}[\ell(\boldsymbol{\theta}; Z)], \quad \boldsymbol{\theta}_{PS} \in \underset{\boldsymbol{\theta}' \in \mathbb{R}^d}{\arg \min} \mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta}_{PS})}[\ell(\boldsymbol{\theta}'; Z)].$$

In agnostic setting, our aim is to get θ_{PS} , e.g., by fixed point iteration. How can we find it?

Greedy deployment scheme (Mendler-Dünner et al., 2020):

Illustration of SGD w/ GD at iteration t,

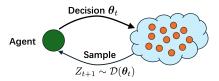


Figure 1: SGD with greedy deployment

SGD with Greedy Deployment (Cont'd)

W1: The distribution $\mathcal{D}(\theta)$ satisfies ϵ -sensitivity if for any $\theta, \theta' \in \mathbb{R}^d$,

$$W_1(\mathcal{D}(\boldsymbol{\theta}), \mathcal{D}(\boldsymbol{\theta}')) \leq \epsilon \|\boldsymbol{\theta} - \boldsymbol{\theta}'\|.$$

where W_1 denotes Wasserstein-1 distance.

▶ Fact I: if $\ell(\cdot; Z)$ is strongly convex + $\mathcal{D}(\theta)$ is 'insensitive' to θ , then

$$\mathbb{E}[\|\boldsymbol{\theta}_t - \boldsymbol{\theta}_{PS}\|^2] = \mathcal{O}(1/t).$$

▶ Fact II: (Perdomo et al., 2020) Suppose that $\ell(\theta; z)$ is L-smooth, μ -strongly convex and distribution $\mathcal{D}(\cdot)$ is ϵ -sensitive,

$$\|\boldsymbol{\theta}_{PS} - \boldsymbol{\theta}_{PO}\|_2 \le \frac{2L\epsilon}{\mu}$$

Research Q: If $\ell(\theta;Z)$ is smooth but possibly non-convex, will SGD/GD converge to fixed point solution θ_{PS} ?

Overview of This Talk

Background

Perf. Pred. with Non-convex Loss

Greedy Deployment - Main Results (I)

Lazy Deployment - Main Results (II)

Conclusion

Performative Prediction with Non-convex Loss

Perf. Pred. with Non-convex Loss

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^d} V(\boldsymbol{\theta}) := \mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta})}[\ell(\boldsymbol{\theta}; Z)]$$

- Well-definedness: The loss function is lower bounded.
- ▶ PS solution may not be unique, so we need a relaxed condition.

Def: The solution $heta_{SPS}$ is called a δ -Stationary PS solution if it satisfies

$$\|\mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta}_{SPS})}[\nabla \ell(\boldsymbol{\theta}_{SPS}; Z)]\| \leq \delta.$$

If $\ell(\cdot)$ is strongly convex, (0-)SPS=PS.

▶ The stochastic gradient $\nabla \ell(\theta_t; Z_{t+1})$ is not a gradient nor unbiased, since

$$\begin{split} \nabla V(\boldsymbol{\theta}) &= \nabla \int_{\mathbf{Z}} \ell(\boldsymbol{\theta}; z) p_{\mathcal{D}(\boldsymbol{\theta})} \mathrm{d}z \\ &= \mathbb{E}_{z \sim \mathcal{D}(\boldsymbol{\theta})} [\nabla \ell(\boldsymbol{\theta}; z)] + \mathbb{E}_{z \sim \mathcal{D}(\boldsymbol{\theta})} [\ell(\boldsymbol{\theta}; z) \nabla_{\boldsymbol{\theta}} \log(p_{\mathcal{D}(\boldsymbol{\theta})}(z))] \end{split}$$

 $\blacktriangleright \text{ Denote } f(\boldsymbol{\theta}_1;\boldsymbol{\theta}_2) \coloneqq \mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta}_2)}[\ell(\boldsymbol{\theta}_1;Z)], \, \nabla f(\boldsymbol{\theta}_1;\boldsymbol{\theta}_2) \coloneqq \mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta}_2)}[\nabla \ell(\boldsymbol{\theta}_1;Z)]$

Contributions: Two Alternative Assumption Sets

- ▶ W1: (Wasserstein sensitivity) $\forall \theta, \theta'$, $\mathcal{W}_1(\mathcal{D}(\theta), \mathcal{D}(\theta')) \leq \epsilon \|\theta \theta'\|$.
- ▶ W2: (Lipschitz loss) $|\ell(\theta;z) \ell(\theta;z')| \le L_0 ||z z'||$.

- ► C1: (TV sensitivity): $\forall \theta, \theta'$, $d_{\text{TV}}(\mathcal{D}(\theta_1), \mathcal{D}(\theta_2)) \leq \epsilon \|\theta \theta'\|$.
- ► C2: (Bounded loss): $\sup_{\theta \in \mathbb{R}^d, z \in \mathsf{Z}} |\ell(\theta; z)| \leq \ell_{\mathsf{max}}.$
- ▶ Note that C1 is stronger than W1, but C2 is weaker than W2.
- ▶ Fact: As shown in (Gibbs and Su, 2002, Sec. 2),

$$W_1(\mathcal{D}(\boldsymbol{\theta}), \mathcal{D}(\boldsymbol{\theta}')) \leq \operatorname{diam}(\mathsf{Z}) \cdot d_{TV}(\mathcal{D}(\boldsymbol{\theta}), \mathcal{D}(\boldsymbol{\theta}'))$$

where $\operatorname{diam}(\mathsf{Z}) := \sup_{z,z' \in \mathsf{Z}} \|z - z'\|$ denotes the diam of the sample space.

- ▶ Sigmoid loss satisfies C2 with $\ell_{max} = 1$ but not W2 expect $\|z\|$ is bounded.
- ▶ Remark: W1&2 and C1&2 are used to quantify the distribution shift effect on Lyapunov function in convergence analysis.

Main Theorem (I)

A1: The gradient map $\nabla \ell(\cdot; \cdot)$ is *L*-Lipschitz,

$$\|\nabla \ell(\boldsymbol{\theta}_1; z_1) - \nabla \ell(\boldsymbol{\theta}_2; z_2)\| \le L\left(\|\boldsymbol{\theta}_1 - \boldsymbol{\theta}_2\| + \|z_1 - z_2\|\right)$$

A2: (Variance) For all θ_1, θ_2 , there exists $\sigma_0, \sigma_1 \geq 0$ such that

$$\mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta}_2)} \left\| \nabla \ell(\boldsymbol{\theta}_1; Z) - \nabla f(\boldsymbol{\theta}_1; \boldsymbol{\theta}_2) \right\|^2 \le \sigma_0^2 + \sigma_1^2 \left\| \nabla f(\boldsymbol{\theta}_1; \boldsymbol{\theta}_2) \right\|^2$$

Theorem 1: Let **A1,2**. Suppose that the stepsize satisfy $\sup_{t\geq 1} \gamma_t \leq \frac{1}{L(1+\sigma_1^2)}$. Moreover, let

$$\tilde{L}=L_0$$
 if **W1, 2** hold, or $\tilde{L}=2\ell_{max}$ if **C1,2** hold.

Then, for any $T \geq 1$, it holds that

$$\sum_{t=0}^{T-1} \frac{\gamma_{t+1}}{4} \mathbb{E} \|\nabla f(\boldsymbol{\theta}_t; \boldsymbol{\theta}_t)\|^2 \leq \Delta_0 + \tilde{L}\epsilon \left(\sigma_0 + (1+\sigma_1^2)\tilde{L}\epsilon\right) \sum_{t=0}^{T-1} \gamma_{t+1} + \frac{L}{2}\sigma_0^2 \sum_{t=0}^{T-1} \gamma_{t+1}^2,$$

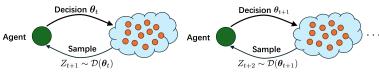
▶ If $\gamma_t = 1/\sqrt{T}$, then the iterates by SGD-GD satisfy

$$\mathbb{E}\left[\left\|\nabla f(\boldsymbol{\theta}_{\mathsf{T}};\boldsymbol{\theta}_{\mathsf{T}})\right\|^{2}\right] \leq \mathcal{O}(1/\sqrt{T}) + \underbrace{4\tilde{L}\epsilon(\sigma_{0} + (1+\sigma_{1}^{2})\tilde{L}\epsilon)}_{\text{=-hias}}$$

▶ Biased-SPS Solution: $\mathcal{O}(\epsilon)$ for noisy SGD, $\mathcal{O}(\epsilon^2)$ for noiseless SGD.

Lazy Deployment

▶ Greedy Deployment $Z_t \sim \mathcal{D}(\theta_t)$, requires deploying the latest model every time when drawing new samples from $\mathcal{D}(\cdot)$.



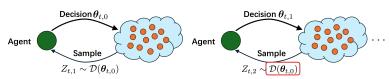
▶ The agent and population progress at the same pace.

Frequent deployment can be costly.

Lazy Deployment: $K \ge 1$ denotes the epoch length,

$$\theta_{t,k+1} = \theta_{t,k} - \gamma \nabla \ell(\theta_{t,k}; Z_{t,k+1}), \text{ where } Z_{t,k+1} \sim \mathcal{D}(\theta_{t,0}),$$

 $\theta_{t+1} = \theta_{t+1,0} = \theta_{t,K}, \quad k = 0, ..., K-1.$



lacktriangle The agent (learner) progresses faster than population o more accurate sol.

Main Theorem (II) – Extension to Lazy Deployment

Theorem 2. Under **A1,2**, **W1,2** or **C1,2**, and suppose that $\sup_{\pmb{\theta} \in \mathbb{R}^d, z \in \mathbb{Z}} \|\nabla \ell(\pmb{\theta}; z)\| \leq G$. Set $\gamma = 1/(K\sqrt{T})$. For sufficient large T, it holds that

$$\mathbb{E}\left[\left\|\nabla f(\boldsymbol{\theta}_{\mathsf{T}};\boldsymbol{\theta}_{\mathsf{T}})\right\|^{2}\right] \lesssim \frac{\Delta_{0}}{\sqrt{T}} + \frac{L\sigma_{0}^{2}}{K\sqrt{T}} + \frac{LG^{2}}{T} + \frac{\tilde{L}\epsilon}{K}\left(\sqrt{K}\sigma_{0} + (K + \sigma_{1}^{2})\tilde{L}\epsilon\right).$$

where T is the random variable drawn from $Unif(\{1, 2, \dots, T\})$.

After simplification, we have

$$\mathbb{E}\left[\|\nabla f(\boldsymbol{\theta}_{\mathsf{T}};\boldsymbol{\theta}_{\mathsf{T}})\|^{2}\right] \lesssim \mathcal{O}\left(\frac{1}{\sqrt{T}} + (\tilde{L}\epsilon)^{2} \frac{K + \sigma_{1}^{2}}{K}\right) \tag{1}$$

Lazy deployment finds $\mathcal{O}(\epsilon^2)$ -SPS solution, when $T, K \to \infty$, while SGD-GD finds $\mathcal{O}(\epsilon)$ solution.

Simulations - Binary Classification

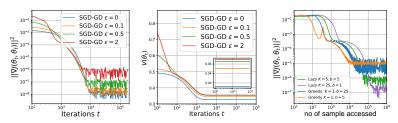
Synthetic Data with Linear Model.

$$\ell(\boldsymbol{\theta}; z) := (1 + \exp(c \cdot y \langle x | \boldsymbol{\theta} \rangle))^{-1} + (\epsilon/2) \|\boldsymbol{\theta}\|^{2},$$

for small regularization $\epsilon>0$, $\ell(\cdot;z)$ is smooth but non-convex.

Generating data distribution: $\mathcal{D}^o \equiv \{(x_i,y_i)\}_{i=1}^m$ with d-dimention feature $x_i \sim \mathcal{U}[-1,1]^d$ and label $y_i = \operatorname{sgn}(\langle x_i \,|\, \boldsymbol{\theta}^o \rangle) \in \{\pm 1\}$, such that $\boldsymbol{\theta}^o \sim \mathcal{N}(0,\boldsymbol{I})$.

Dist. Shift: $\mathcal{D}(\theta) = \text{Unif}\{(x_i - \epsilon_L \theta, y_i)\}_{i=1}^m$, $\epsilon_L > 0$ controls shift magnitude.



- ▶ Left & Middle Fig.: SGD-GD shows a fast transient phase, then saturates near a constant; $\epsilon \propto \text{bias} \rightarrow \text{Theorem 1} \checkmark$
- ▶ **Right Fig.**: SGD-Lazy deployment with $K \in \{5, 10\}$ and stepsize $\gamma = 1/(K\sqrt{T})$. $K \uparrow$ leads to lower bias. \to **Theorem 2** \checkmark

Conclusions

Performative Prediction

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^d} V(\boldsymbol{\theta}) := \mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta})}[\ell(\boldsymbol{\theta}; Z)]$$

If $\ell(\theta; Z)$ is smooth but possibly non-convex:

- ▶ (A) SGD with greedy deployment finds an $\mathcal{O}(\epsilon)$ -biased SPS solution.
- ▶ **(B)** The bias can be reduced to $\mathcal{O}(\epsilon^2)$ with exact gradients.
- ▶ (C) SGD with lazy deployment yields a more accurate SPS solution as the episode length $\rightarrow \infty$.
- Key idea: use a time-varying Lyapunov function to analyze non-gradient dynamics.

Thank you for your time and attention!

Scan the qr code for the full paper \rightarrow

References I

- Brückner, M. and Scheffer, T. (2011). Stackelberg games for adversarial prediction problems. In *Proceedings of the* 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 547–555.
- Gibbs, A. L. and Su, F. E. (2002). On choosing and bounding probability metrics. International statistical review, 70(3):419–435.
- Izzo, Z., Ying, L., and Zou, J. (2021). How to learn when data reacts to your model: Performative gradient descent. In ICML.
- Mendler-Dünner, C., Perdomo, J., Zrnic, T., and Hardt, M. (2020). Stochastic optimization for performative prediction. Advances in Neural Information Processing Systems, 33:4929–4939.
- Miller, J. P., Perdomo, J. C., and Zrnic, T. (2021). Outside the echo chamber: Optimizing the performative risk. In *International Conference on Machine Learning*, pages 7710–7720. PMLR.
- Perdomo, J., Zrnic, T., Mendler-Dünner, C., and Hardt, M. (2020). Performative prediction. In International Conference on Machine Learning, pages 7599–7609. PMLR.