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Motivation: Data Distribution May Shift

» Performative Prediction (PP): stochastic optimization problem whose data
distribution depends on the decision variable.

Decisions 4

Predictions World

‘ Data '

» Learning in economic or societal environment is causative: the models aim to
predict can be influenced by the models themselves.

> Example: self-fulfilling or self-negating predictions.

> Example (I): Spam Email Detection
» An email server designs a filter to block spam.

» Spammers adapt to bypass the filter and continue distributing spam or malware.

> Example (I1): Traffic Congestion

» Google Maps suggests the fastest route based on current traffic conditions.
» Many users follow the suggestion, the recommended route becomes congested.

> Related topic: Stackberg games (Briickner and Scheffer, 2011).
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From Practice to Mathematical Model

» Performative Prediction: Data Z = (z,y) ~ D(0)

» Formulation: minimize the performative risk

» Example of D(0): base distribution D° = {(z, y:) }i%1, (x4, y:) is feature
label pair, D(0) = {(z; — €0, y;) }i~1, where € is shift magnitude.

> Perdomo et al. (2020) uses D(6) to capture the distribution shift
(population’s response of Z) due to the learner’s state 6.

» How should the learner deal with performativity?
> Agnostic Setting: SGD with greedy deployment on £(0; z) with z ~ D(0), e.g.,

Perdomo et al. (2020), Mendler-Diinner et al. (2020).
» Requires no extra knowledge on V(60) and population ...

» Proactive Setting: Estimate true gradient of VV(0), e.g., Izzo et al. (2021),
Miller et al. (2021).

> Needs extra knowledge on V(0) and population utility function.
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SGD with Greedy Deployment (Mendler-Diinner et al., 2020)

» Two different solutions to performative prediction:

0po € argminE; . p)[l(0; Z)], Ops € arg minIEZNle,S)[((O/; Z)].
OcRd 0/ cRrd

» In agnostic setting, our aim is to get Opg, e.g., by fixed point iteration. How
can we find it?
Greedy deployment scheme (Mendler-Diinner et al., 2020):
Popu/ation 5 Zt+1 ~ D(Bt),
Learner (Agent) : 0111 = 0y — Y11V (Os; Ziy1).

» lllustration of SGD w/ GD at iteration ¢,

Decision 6,

Agent
Sample

Zyy1 ~ D(6)

Figure 1: SGD with greedy deployment
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SGD with Greedy Deployment (Cont’d)

WI1: The distribution D(0) satisfies e-sensitivity if for any 8,0’ € R,
Wi(D(9),D(0")) <€|6—6.
where W, denotes Wasserstein-1 distance.
» Fact I: if £(; Z) is strongly convex + D(0) is ‘insensitive’ to 6, then
E[|6: — Ops|’] = O(1/t).
» Fact Il: (Perdomo et al., 2020) Suppose that ¢(8; z) is L-smooth, pu-strongly
convex and distribution D(-) is e-sensitive,

10ps — Opolly, < 2

Le
m

Research Q: If £(0; Z) is smooth but possibly non-convex, will SGD/GD
converge to fixed point solution Ops?
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Performative Prediction with Non-convex Loss

Perf. Pred. with Non-convex Loss

min V(0) :=Ez.pe)[£(0; Z)]

6cRd

» Well-definedness: The loss function is lower bounded.

» PS solution may not be unique, so we need a relaxed condition.

Def: The solution Ospgs is called a -Stationary PS solution if it satisfies
|Ez~p(0s5ps) [VEOsPs; 2)]|| < 6.
If £(-) is strongly convex, (0-)SPS=PS.
» The stochastic gradient V{(0:; Z;+1) is not a gradient nor unbiased, since
VvV (0) = V/ZZ(G;z)pD(g)dz

=E.p@©)[VL(O; 2)] + E..p(0)[£(0; 2) Ve log(pp(e)(2))]

» Denote f(91; 92) = ]EZND(GQ) [E(Ol, Z)}, Vf(el, 02) = EZND(QQ)[VE(OH Z)]
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Contributions: Two Alternative Assumption Sets

> W1: (Wasserstein sensitivity) V0,6’ > C1: (TV sensitivity): V0,6,

Wi(D(6),D(6))<e||6 — 0']. drv(D(61),D(6:)) < €0 — 0’|
> W2: (Lipschitz loss) »> C2: (Bounded loss):
10(8; 2) — £(6; 2'))| < Lo |z — || SuPpere scz 10(8; 2)| < fmae.

» Note that C1 is stronger than W1, but C2 is weaker than W2.
> Fact: As shown in (Gibbs and Su, 2002, Sec. 2),
Wi(D(8),D(6")) < diam(Z) - drv (D(8),D(6"))
where diam(Z) := sup, /7 ||z — 2|| denotes the diam of the sample space.

> Sigmoid loss satisfies C2 with £;na; = 1 but not W2 expect ||z|| is bounded.

» Remark: W1&2 and C1&2 are used to quantify the distribution shift effect
on Lyapunov function in convergence analysis.
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Main Theorem (1)

Al: The gradient map V/(-;-) is L-Lipschitz,
IVE(81; 21) — VE(62; 22)|| < L (||61 — 02| + [|z1 — 22]|)
A2: (Variance) For all 61,03, there exists 09, 01 > 0 such that
Ez~p(0,) [VU(O1; Z) — V [(61;62)||* < o + 07 | V.f(61;62)|”

Theorem 1: Let Al,2. Suppose that the stepsize satisfy sup,~; 7 <

— L(1+0' )
Moreover, let
L =1Ly if W1,2hold, or L= 2lma, if C1,2 hold.
Then, for any T' > 1, it holds that
T—1 5 5 T—1 I T—1
> %E IV £(8¢;0)|1” < Ao+ Le (00+(1 + U%)LE) > ’Yt+1+503 > v

t=0 t=0
> If 4y = 1/4/T, then the iterates by SGD-GD satisfy
E [V £(67;60)IP] < O(/VT) + dLe(oo + (1 + %) Le)

=:bias

> Biased-SPS Solution: O(¢) for noisy SGD, O(e?) for noiseless SGD.
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Lazy Deployment

»> Greedy Deployment Z; ~ D(6;), requires deploying the latest model every
time when drawing new samples from D(-

Decision 02 Decision 0t+1

Agent Agent e
Sample Sample
Zyy1 ~ D(6;) Zyyo ~ D(0141)

» The agent and population progress at the same pace.

Frequent deployment can be costly.

» Lazy Deployment: K > 1 denotes the epoch length,

0: k41 =0:x — YVUOuk; Zi k11), Where Zy pp1 ~ D(0¢0),
9t+1 == 0t+1,0 == 0@}(, k - O, ,K - 1

Decision 0, 0 Decision 6, |
Agent Agent
Sample Sample

Zy1 ~ D(60) Zt2
» The agent (learner) progresses faster than population — more accurate sol.
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Main Theorem (Il) — Extension to Lazy Deployment

Theorem 2. Under A1,2, W1,2 or C1,2, and suppose that
SUPgerd o7 ||VE(0; 2)|| < G. Set v =1/(KV/T). For sufficient large T,
it holds that

Ay Lo2 LG? Le
E||VfOr;:67)°| S ottt

where T is the random variable drawn from Unif({1,2,--- ,T}).

<\/EU’0+(K + J%)EE) .

After simplification, we have

st

. 2| < =
B [I976r0n1’] 0 (= + L
» Lazy deployment finds O(e?)-SPS solution, when T, K — oo, while
SGD-GD finds O(e) solution.
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Simulations - Binary Classification
Synthetic Data with Linear Model.
0(6;2) = (1+exp(c-y(z]6)) " + (c/2) 0],
for small regularization € > 0, £(+; z) is smooth but non-convex.

Generating data distribution: D° = {(z;,y:) }i~; with d-dimention feature
x; ~ U[—1,1]% and label y; = sgn({z; | 8°)) € {£1}, such that 8° ~ N(0, I).

Dist. Shift: D(6) = Unif{(xz; — er0,y:)}ix1, €L > 0 controls shift magnitude.

102 —— SGD-GD =0 —— SGD-GDe=0
08
o SGD-GD £=0.1 SGD-GD € =0.1
—— SGD-GD £=0.5 —— SGD-GD £=0.5

—— SGD-GDe=2

—— SGD-GD £ =2

10°°f — Lazyk=5,b=5
— Lazyk=25,b=1
1077 ] — Greedy k=1,b=25
Greedy K=1,b=5

10? 10° 104 10° 10t 10? 10° 10* 10° 108 10* 10? 10° 10* 10° 10°
Iterations t Iterations no of sample accessed

> Left & Middle Fig.: SGD-GD shows a fast transient phase, then saturates
near a constant; € « bias — Theorem 1 v/

> Right Fig.: SGD-Lazy deployment with K € {5,10} and stepsize
v =1/(KV/T). K 1 leads to lower bias. — Theorem 2
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Conclusions

Performative Prediction

min V(0) := Ez.pe)[£(0; Z)]
OcRrd

If £(0; Z) is smooth but possibly non-convex:
> (A) SGD with greedy deployment finds an O(¢)-biased SPS solution.
> (B) The bias can be reduced to O(c?) with exact gradients.

» (C) SGD with lazy deployment yields a more accurate SPS solution as the
episode length — oo.

> Key idea: use a time-varying Lyapunov function to analyze non-gradient
dynamics.

Thank you for your time and attention!

Scan the gr code for the full paper —
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