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Motivation: Data Distribution May Shift

▶ Performative Prediction (PP): stochastic optimization problem whose data
distribution depends on the decision variable.

▶ Learning in economic or societal environment is causative: the models aim to
predict can be influenced by the models themselves.
▶ Example: self-fulfilling or self-negating predictions.

▶ Example (I): Spam Email Detection
▶ An email server designs a filter to block spam.
▶ Spammers adapt to bypass the filter and continue distributing spam or malware.

▶ Example (II): Traffic Congestion
▶ Google Maps suggests the fastest route based on current traffic conditions.
▶ Many users follow the suggestion, the recommended route becomes congested.

▶ Related topic: Stackberg games (Brückner and Scheffer, 2011).
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From Practice to Mathematical Model

▶ Performative Prediction: Data Z = (x, y) ∼ D(θ)

▶ Formulation: minimize the performative risk

min
θ

V (θ) := EZ∼D(θ)[ℓ(θ;Z)]

▶ Example of D(θ): base distribution Do ≡ {(xi, yi)}mi=1, (xi, yi) is feature
label pair, D(θ) = {(xi − ϵθ, yi)}mi=1, where ϵ is shift magnitude.

▶ Perdomo et al. (2020) uses D(θ) to capture the distribution shift
(population’s response of Z) due to the learner’s state θ.

▶ How should the learner deal with performativity?

▶ Agnostic Setting: SGD with greedy deployment on ℓ(θ; z) with z ∼ D(θ), e.g.,
Perdomo et al. (2020), Mendler-Dünner et al. (2020).

▶ Requires no extra knowledge on V (θ) and population ...

▶ Proactive Setting: Estimate true gradient of ∇V (θ), e.g., Izzo et al. (2021),
Miller et al. (2021).

▶ Needs extra knowledge on V (θ) and population utility function.
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SGD with Greedy Deployment (Mendler-Dünner et al., 2020)

▶ Two different solutions to performative prediction:

θPO ∈ argmin
θ∈Rd

EZ∼D(θ)[ℓ(θ;Z)], θPS ∈ argmin
θ′∈Rd

EZ∼D(θPS)[ℓ(θ
′;Z)].

▶ In agnostic setting, our aim is to get θPS , e.g., by fixed point iteration. How
can we find it?

Greedy deployment scheme (Mendler-Dünner et al., 2020):

Population : Zt+1 ∼ D(θt),

Learner (Agent) : θt+1 = θt − γt+1∇ℓ(θt;Zt+1).

▶ Illustration of SGD w/ GD at iteration t,

Figure 1: SGD with greedy deployment
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SGD with Greedy Deployment (Cont’d)

W1: The distribution D(θ) satisfies ϵ-sensitivity if for any θ,θ′ ∈ Rd,

W1(D(θ),D(θ′)) ≤ ϵ
∥∥θ − θ′∥∥ .

where W1 denotes Wasserstein-1 distance.

▶ Fact I: if ℓ(·;Z) is strongly convex + D(θ) is ‘insensitive’ to θ, then

E[∥θt − θPS∥2] = O(1/t).

▶ Fact II: (Perdomo et al., 2020) Suppose that ℓ(θ; z) is L-smooth, µ-strongly
convex and distribution D(·) is ϵ-sensitive,

∥θPS − θPO∥2 ≤ 2Lϵ
µ

Research Q: If ℓ(θ;Z) is smooth but possibly non-convex, will SGD/GD
converge to fixed point solution θPS?
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Performative Prediction with Non-convex Loss

Perf. Pred. with Non-convex Loss

min
θ∈Rd

V (θ) := EZ∼D(θ)[ℓ(θ;Z)]

▶ Well-definedness: The loss function is lower bounded.

▶ PS solution may not be unique, so we need a relaxed condition.

Def: The solution θSPS is called a δ-Stationary PS solution if it satisfies∥∥EZ∼D(θSPS)[∇ℓ(θSPS ;Z)]
∥∥ ≤ δ.

If ℓ(·) is strongly convex, (0-)SPS=PS.

▶ The stochastic gradient ∇ℓ(θt;Zt+1) is not a gradient nor unbiased, since

∇V (θ) = ∇
∫
Z

ℓ(θ; z)pD(θ)dz

= Ez∼D(θ)[∇ℓ(θ; z)] + Ez∼D(θ)[ℓ(θ; z)∇θ log(pD(θ)(z))]

▶ Denote f(θ1;θ2) := EZ∼D(θ2)[ℓ(θ1;Z)], ∇f(θ1;θ2) := EZ∼D(θ2)[∇ℓ(θ1;Z)]
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Contributions: Two Alternative Assumption Sets

▶ W1: (Wasserstein sensitivity) ∀θ,θ′,
W1(D(θ),D(θ′))≤ϵ ∥θ − θ′∥.

▶ W2: (Lipschitz loss)
|ℓ(θ; z)− ℓ(θ; z′))| ≤ L0 ∥z − z′∥.

▶ C1: (TV sensitivity): ∀θ,θ′,
dTV(D(θ1),D(θ2)) ≤ ϵ ∥θ − θ′∥.

▶ C2: (Bounded loss):
supθ∈Rd,z∈Z |ℓ(θ; z)| ≤ ℓmax.

▶ Note that C1 is stronger than W1, but C2 is weaker than W2.

▶ Fact: As shown in (Gibbs and Su, 2002, Sec. 2),

W1(D(θ),D(θ′)) ≤ diam(Z) · dTV (D(θ),D(θ′))

where diam(Z) := supz,z′∈Z ∥z − z′∥ denotes the diam of the sample space.

▶ Sigmoid loss satisfies C2 with ℓmax = 1 but not W2 expect ∥z∥ is bounded.

▶ Remark: W1&2 and C1&2 are used to quantify the distribution shift effect
on Lyapunov function in convergence analysis.
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Main Theorem (I)

A1: The gradient map ∇ℓ(·; ·) is L-Lipschitz,

∥∇ℓ(θ1; z1)−∇ℓ(θ2; z2)∥ ≤ L (∥θ1 − θ2∥+ ∥z1 − z2∥)

A2: (Variance) For all θ1,θ2, there exists σ0, σ1 ≥ 0 such that

EZ∼D(θ2) ∥∇ℓ(θ1;Z)−∇f(θ1;θ2)∥2 ≤ σ2
0 + σ2

1 ∥∇f(θ1;θ2)∥2

Theorem 1: Let A1,2. Suppose that the stepsize satisfy supt≥1 γt≤ 1
L(1+σ2

1)
.

Moreover, let

L̃ = L0 if W1, 2 hold, or L̃ = 2ℓmax if C1,2 hold.

Then, for any T ≥ 1, it holds that

T−1∑
t=0

γt+1

4
E ∥∇f(θt;θt)∥2≤∆0+L̃ϵ

(
σ0+(1 + σ2

1)L̃ϵ
) T−1∑

t=0

γt+1+
L

2
σ2
0

T−1∑
t=0

γ2
t+1,

▶ If γt = 1/
√
T , then the iterates by SGD-GD satisfy

E
[
∥∇f(θT;θT)∥2

]
≤ O(1/

√
T ) + 4L̃ϵ(σ0 + (1 + σ2

1)L̃ϵ)︸ ︷︷ ︸
=:bias

▶ Biased-SPS Solution: O(ϵ) for noisy SGD, O(ϵ2) for noiseless SGD.
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Lazy Deployment
▶ Greedy Deployment Zt ∼ D(θt), requires deploying the latest model every

time when drawing new samples from D(·).

· · ·

▶ The agent and population progress at the same pace.

Frequent deployment can be costly.

▶ Lazy Deployment: K ≥ 1 denotes the epoch length,

θt,k+1 = θt,k − γ∇ℓ(θt,k;Zt,k+1), where Zt,k+1 ∼ D(θt,0),

θt+1 = θt+1,0 = θt,K , k = 0, ...,K − 1.

· · ·

▶ The agent (learner) progresses faster than population → more accurate sol.
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Main Theorem (II) – Extension to Lazy Deployment

Theorem 2. Under A1,2, W1,2 or C1,2, and suppose that
supθ∈Rd,z∈Z ∥∇ℓ(θ; z)∥ ≤ G. Set γ = 1/(K

√
T ). For sufficient large T ,

it holds that

E
[
∥∇f(θT;θT)∥2

]
≲

∆0√
T
+

Lσ2
0

K
√
T
+
LG2

T
+
L̃ϵ

K

(√
Kσ0+(K + σ2

1)L̃ϵ
)
.

where T is the random variable drawn from Unif({1, 2, · · · , T}).

After simplification, we have

E
[
∥∇f(θT;θT)∥2

]
≲ O

(
1√
T

+ (L̃ϵ)2
K + σ2

1

K

)
(1)

▶ Lazy deployment finds O(ϵ2)-SPS solution, when T,K → ∞, while
SGD-GD finds O(ϵ) solution.
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Simulations - Binary Classification

Synthetic Data with Linear Model.

ℓ(θ; z) := (1 + exp(c · y⟨x |θ⟩))−1 + (ϵ/2) ∥θ∥2 ,

for small regularization ϵ > 0, ℓ(·; z) is smooth but non-convex.

Generating data distribution: Do ≡ {(xi, yi)}mi=1 with d-dimention feature
xi ∼ U [−1, 1]d and label yi = sgn(⟨xi |θo⟩) ∈ {±1}, such that θo ∼ N (0, I).

Dist. Shift: D(θ) = Unif{(xi − ϵLθ, yi)}mi=1, ϵL > 0 controls shift magnitude.
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▶ Left & Middle Fig.: SGD-GD shows a fast transient phase, then saturates
near a constant; ϵ ∝ bias → Theorem 1 ✓

▶ Right Fig.: SGD-Lazy deployment with K ∈ {5, 10} and stepsize
γ = 1/(K

√
T ). K ↑ leads to lower bias. → Theorem 2 ✓
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Conclusions

Performative Prediction

min
θ∈Rd

V (θ) := EZ∼D(θ)[ℓ(θ;Z)]

If ℓ(θ;Z) is smooth but possibly non-convex:

▶ (A) SGD with greedy deployment finds an O(ϵ)-biased SPS solution.

▶ (B) The bias can be reduced to O(ϵ2) with exact gradients.

▶ (C) SGD with lazy deployment yields a more accurate SPS solution as the
episode length → ∞.

▶ Key idea: use a time-varying Lyapunov function to analyze non-gradient
dynamics.

Thank you for your time and attention!

Scan the qr code for the full paper →
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