Stochastic Optimization Schemes for Performative Prediction with Nonconvex Loss

Performative Prediction

♦ Motivation: Learning in economic or ♦ societal environment is causative. \Diamond ♦ Example: Hiring, Loan application. \Diamond classifier $f(\cdot)$ \Diamond

 \Diamond

◇ Perf Pred: model to be trained can influence the outcome they aim to predict.

Formulation

- Performativity modeled by distribution
 shift $\mathcal{D}(\boldsymbol{\theta})$.
- ♦ Performative Risk Minimization: $\min_{\boldsymbol{\theta} \in \mathbb{R}^d} V(\boldsymbol{\theta}) := \mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta})} \left[\ell(\boldsymbol{\theta}; Z) \right]$
- ♦ But $\nabla V(\boldsymbol{\theta})$ is difficult to estimate \Rightarrow

SGD-Greedy Deploy (SGD-GD):

 $\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \gamma \nabla \ell(\boldsymbol{\theta}_t; Z_{t+1}), \ Z_{t+1} \sim \mathcal{D}(\boldsymbol{\theta}_t) \mid \diamond$

- ♦ Leads to a **non-gradient dynamics**.
- \diamond **Fact** [Mendler-Dünner, 2020]: If $\ell(\boldsymbol{\theta}; Z) =$ str. cvx & mild dist. shift, then SGD-GD \rightarrow 'performative stable' (PS) sol:

 $\boldsymbol{\theta}_{PS} = \arg\min_{\boldsymbol{\theta}' \in \mathbb{R}^d} \mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta}_{PS})}[\ell(\boldsymbol{\theta}'; Z)].$

 \diamond Limitation: requires str. cvx $\ell(\cdot; z)$.

δ -Stationary Perf. Stable sol.

♦ **Def.** $\theta^* \in \mathbb{R}^d$ is an δ -SPS solution if: $\left\|\mathbb{E}_{Z\sim\mathcal{D}(\boldsymbol{\theta}^{\star})}[\nabla\ell(\boldsymbol{\theta}^{\star};Z)]\right\|^{2} \leq \delta$

Qiang Li, Hoi-To Wai, Dept. of SEEM, The Chinese University of Hong Kong

Key lakeaways	Synthetic D
 (A) SGD w/ greedy deployment finds an O(ε)-biased SPS sol. (B) Bias level reduced to O(ε²) with exact gradient. (C) SGD w/ lazy deployment finds bias-free SPS sol if ep. length → ∞. Idea: time varying Lyapunov function for non-gradient dynamics. 	$\diamond \textbf{Setup: sigmoid} \\ \ell(\boldsymbol{\theta}; z) \coloneqq ($ $\diamond \textbf{Data \& Dist.} \\ y_i = \text{sgn}(\langle x_i, \boldsymbol{\theta}^o \rangle $ $\overset{_{10^{-2}}}{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$
Main Results	$\sum_{i=1}^{10^{-3}} 10^{-4}$ SGD-GD $\varepsilon = 0.5$ SGD-GD $\varepsilon = 2$
Set $J(\boldsymbol{\theta}_1; \boldsymbol{\theta}_2) := \mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta}_2)}[\ell(\boldsymbol{\theta}; Z)]$, partial gradient $\nabla_1 J(\boldsymbol{\theta}_1; \boldsymbol{\theta}_2) := \mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta}_2)}[\nabla \ell(\boldsymbol{\theta}; Z)]$.	$ \begin{array}{c} $
A1. (Smoothness) $\ \nabla \ell(\boldsymbol{\theta}; z) - \nabla \ell(\boldsymbol{\theta}'; z)\ \leq L \ \boldsymbol{\theta} - \boldsymbol{\theta}'\ , \forall \boldsymbol{\theta}, \boldsymbol{\theta}' \in \mathbb{R}^d.$ A2. (Variance) $\mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta}_2)} \left[\ \nabla \ell(\boldsymbol{\theta}_1; Z) - \nabla_1 J(\boldsymbol{\theta}_1; \boldsymbol{\theta}_2)\ ^2 \right] \leq \sigma_0^2 + \sigma_1^2 \ \nabla J(\boldsymbol{\theta}_1; \boldsymbol{\theta}_2)\ ^2.$	$\Rightarrow (Left) SGD-GD ($
W1: (Wasserstein sensitivity) $\mathcal{W}_1(\mathcal{D}(\theta), \mathcal{D}(\theta')) \leq \epsilon \ \theta - \theta'\ .$ W2: (Lipschitz loss) $ \ell(\theta; z) - \ell(\theta; z')) \leq L_0 \ z - z'\ .$ $\diamond C1: (TV sensitivity):$ $\delta_{TV}(\mathcal{D}(\theta_1), \mathcal{D}(\theta_2)) \leq \epsilon \ \theta - \theta'\ .$ $\diamond C2: (Bounded loss):$ $\sup_{\theta \in \mathbb{R}^d, z \in Z} \ell(\theta; z) \leq \ell_{max}.$	 bias ↑. → I her (Middle) Perform to higher bias. (Right) Set step bias. → Theore
Note that $C1 = stronger$ than $W1$, but $C2 = weaker$ than $W2$.	Spam Detec
Theorem 1 : Under A1-2, (C1 & C2) or (W1 & W2). It holds $\mathbb{E}\left[\ \nabla_1 J(\boldsymbol{\theta}_{T}; \boldsymbol{\theta}_{T})\ ^2 \right] \lesssim 1/\sqrt{T} + \underbrace{\tilde{L}\epsilon\left(\sigma_0 + (1 + \sigma_1^2)\tilde{L}\epsilon\right)}_{\mathcal{O}(\epsilon\sigma_0 + \epsilon^2) - \mathbf{bias}}.$	 Data: Spambase NN Classifier <i>j</i> activation and a Distribution S
Biased-SPS Sol.: $\mathcal{O}(\epsilon)$ for noisy SGD, $\mathcal{O}(\epsilon^2)$ for noiseless SGD. Proof Idea : study a <i>descent lemma</i> for $J(\theta_{t+1}; \theta_t) - J(\theta_t; \theta_t)$, then bound the distance for $ J(\theta_{t+1}; \theta_t) - J(\theta_{t+1}; \theta_{t+1}) $.	$x = \arg \max_{x'}$ We approximate $\Rightarrow \text{ Param.: } \gamma_{\text{Greedy}}$
SGD-Lazy Deployment : let $K \ge 1$ be the epoch length $\boldsymbol{\theta}_{t,k+1} = \boldsymbol{\theta}_{t,k} - \gamma \nabla \ell(\boldsymbol{\theta}_{t,k}; Z_{t,k+1}), \text{ where } Z_{t,k+1} \sim \mathcal{D}(\boldsymbol{\theta}_t),$ $\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_{t+1,0} = \boldsymbol{\theta}_{t,K}, k = 0,, K - 1.$	$SGD-GD \varepsilon = 10$ $SGD-GD \varepsilon = 100$ $I0^{-3}$ $I0^{-4}$ $I0^{-5}$ $I0^{-6}$ $I0^{-6}$ $I0^{-6}$ $I0^{-6}$ $I0^{-1}$ $I0^{-2}$ $I0^{-3}$ $I0^{-4}$ $I0^{-5}$ $I0^{-6}$ $I0^{-6$
Theorem 2 : Same as Theorem 1 + bounded gradient. It holds	♦ Lazy deploy perf ϵ_{NN} : 10 \mapsto 10 ⁵ ,
$\mathbb{E}\left[\ \nabla_1 J(\boldsymbol{\theta}_{T};\boldsymbol{\theta}_{T})\ ^2\right] \lesssim \frac{1}{\sqrt{T}} + \frac{2\sigma_0}{K\sqrt{T}} + \frac{2\sigma}{K}\left(\sqrt{K\sigma_0} + \sqrt{(K+\sigma_1^2)L\epsilon}\right).$	References
With $K \uparrow \infty$, lazy deployment \approx repeated risk minimization.	◇ Perdomo, Juan,◇ Mendler-Dünner,

 \diamond If $\ell(\theta; z)$ is str. cvx, then (0-)SPS = PS. \diamond Finds a *bias-free SPS solution* when $T, K \uparrow \infty$.

ata with Linear Model

converges to a biased-SPS solution. $\epsilon_L \uparrow \rightarrow$ orem 1 🗸

mative risk $V(\boldsymbol{\theta}_t)$ vs Iterations t. $\epsilon_L \uparrow$ leads

psize $\gamma = 1/(K\sqrt{T})$. $K \uparrow$ leads to lower em 2 🗸

ction with Neural Network

se [Hopkins et al. 1999]. m = 4601, d = 48. $f_{\theta}(x)$: three fully-connected layers with tanh sigmoid output layer.

forms better than greedy as ϵ_{NN} \uparrow . When no. sample for three algo: $\times 4$, $\times 3$, $\times 2.4$.

et al. Performative prediction, ICML 2020. et al. Stochastic optimization for performative prediction NeurIPS 2020.

Acknowledgement: CUHK Direct Grant #4055208.