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Prediction / ML

⋄ Supervised learning: static + i.i.d. data.

⋄ Decision can cause distribution shift.

⋄ Performative Prediction: data distribu-
tion depends on decision variables.

Goal: minimize performative risk

min
θ
L(θ) := Ez=(x ,y)∼D(θ)[ℓ(θ; z)]

Sol.: θPO ∈ argminθ∈Rd Ez∼D(θ)ℓ(θ; z),
θPS = argminθ′∈Rd Ez∼D(θPS)[ℓ(θ

′; z)].

What should the learner do?

⋄ Proactive: estimate true gradient∇L(θ).
⋄ Agnostic: SGD/GD on ℓ(z ; θ) with z ∼
D(θ) (no extra knowledge on agents).

⋄ Greedy Deploy [Mendler-Dünner, 2020]:

⋄ learner: θk+1 = θk−γk+1∇ℓ(θk; zk+1),
⋄ agents: zk+1 ∼ D(θk)
⋄ Immediate vs slow adaptation.

Highlights

⋄ State dependent performative predic-
tion framework.

⋄ Agnostic scheme has θk → θPS at O(1k).

State-dependent Performative Prediction with SA

⋄ Idea: models agents’ adaptation via a controlled Markov Chain described
by kernel Pθ : Z×Z → R+ and stationary dist. D(θ).

SA Algorithm with Adapted Agent Response

Agents draw: zk+1 ∼ Pθk(zk, ·) (← allows slow adaptation)

Learner updates: θk+1 = θk − γk+1∇ℓ(θk; zk+1) and deploys θk+1.

⋄ Example: AR model, agents running SGD to adapt to z ∼ D(θ):
zk+1 = zk + α∇zU(zk; θk, ζk+1), ← U = utility fct.

⋄ Challenge: Analyze MSE E[∥θk − θPS∥2] w.o. boundedness assumption.
Main Results

⋄ Define: f (θ1; θ2)=Ez∼D(θ2) [ℓ (θ1; z)] , ∇f (θ1; θ2) = Ez∼D(θ2) [∇ℓ (θ1; z)]
⋄ A1. µ−strongly convex. A2. L-jointly Lipschitz gradient.
⋄ A3. (ϵ−sensitivity) W1(D(θ),D(θ′)) ≤ ϵ∥θ − θ′∥, ∀ θ, θ′ ∈ Rd,

⋄ A4. σ-perturbation with sampled gradient

supz∈Z ∥∇ℓ(θ; z)−∇f (θ; θPS)∥ ≤ σ (1 + ∥θ − θPS∥)
⋄ A5. Poisson equation: ∃∇̂ℓ : Rd×Z→ Rd s.t. ∀ θ, θ′ ∈ Rd, z ∈ Z,

∇ℓ(θ′; z)− Ez ′∼D(θ)[∇ℓ(θ′; z)] = ∇̂ℓ(θ′; z)− Pθ∇̂ℓ(θ′; z).
⋄ A6. LPH-smoothness for Poisson equation

supz∈Z ∥Pθ∇̂ℓ(θ; z)− Pθ′∇̂ℓ(θ′; z)∥ ≤ LPH∥θ − θ′∥, ∀ θ, θ′.

⋄ Example: For all θ, uniformly geometrically ergodic MC (Pθ) (A5 ✓).

⋄ Example: Agents’ utility function U(·) is quadratic (A6 ✓ ).

Theorem Under A1-A6. Let ϵ < µ
L and with non-increasing step sizes

{γk}k≥1, there exists C where it holds

E[∥θk − θPS∥2] ≤
∏k

i=1

(
1− γi

µ−Lϵ
2

)
∥θ0− θPS∥2︸ ︷︷ ︸

Transient

+ Cγk︸︷︷︸
Fluctuation

,

⋄ Convergence region: ϵ < µ
L, Convergence rate O(1/k).

⋄ (Non-convex ℓ) Convergence to near-stationary point of L(θ).

Numerical Experiments

Logistic Regression —

ℓ(θ; z) =
β

2
∥θ∥2 + log(1 + exp(⟨θ, x⟩))− y⟨θ, x⟩

Synthetic Data for SVM

⋄ Goal: examine the impact of different agents’ response rate
(α) on convergence rate of SA.

⋄ Agent Response: D(θ) is obtained through evaluating the
best quadratic response, i.e.

zk+1 ∈ argmaxz ′∈ZU(z
′; z̃k+1 ∼ D0),

where Uq(z
′; z , θ) = ⟨θ, x ′⟩ − ∥x

′−x∥2
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⋄ α ↓ leads to a slower Markov chain, the mixing time L̂ ↑.

Real Data for strategic classification:
⋄ Agent - Logistic response (no closed form solution)

Ulg(z
′; z , θ) = y⟨θ, x ′⟩ − log(1 + exp(⟨θ, x ′⟩))− ∥x

′−x∥2
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⋄ (Left) α ↓ 0, SA convergence speed ↓, mixing time ↑.
⋄ (Right) no. learner’s iteration ↑ ⇒ error decreases rate ↑.
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