State-dependent Performative Prediction with Stochastic Approximation Qiang LI, Hoi-To Wai Dept. of SEEM, The Chinese University of Hong Kong

Prediction / ML

- ♦ Supervised learning: static + i.i.d. data. \Diamond
- ♦ Decision can cause distribution shift.
- ◇ Performative Prediction: data distribution depends on decision variables.
- **Goal:** minimize performative risk $\min_{\theta} \mathcal{L}(\theta) := \mathbb{E}_{z=(x,y)\sim \mathcal{D}(\theta)}[\ell(\theta;z)]$

Sol.: $\theta_{PO} \in \arg \min_{\theta \in \mathbb{R}^d} \mathbb{E}_{z \sim \mathcal{D}(\theta)} \ell(\theta; z),$ $\theta_{PS} = \arg\min_{\theta' \in \mathbb{R}^d} \mathbb{E}_{z \sim \mathcal{D}(\theta_{PS})}[\ell(\theta'; z)].$

What should the learner do?

- \diamond **Proactive**: estimate true gradient $\nabla \mathcal{L}(\theta)$. \diamond Agnostic: SGD/GD on $\ell(z;\theta)$ with $z \sim$ $\mathcal{D}(\theta)$ (no extra knowledge on agents).
- ♦ Greedy Deploy [Mendler-Dünner, 2020]:
 - $\diamond \text{ learner: } \theta_{k+1} = \theta_k \gamma_{k+1} \nabla \ell(\theta_k; z_{k+1}),$
 - \diamond agents: $z_{k+1} \sim \mathcal{D}(\theta_k)$
 - ♦ Immediate vs slow adaptation.

Highlights

♦ State dependent performative prediction framework.

 \diamond Agnostic scheme has $\theta_k \to \theta_{PS}$ at $\mathcal{O}(\frac{1}{k})$. Deploy classifier θ_0 Deploy classifier θ Deploy classifier θ_P

Controlled MC

 $= \pi_{\theta}(\cdot)$

State-dependent Performative Prediction with SA

Idea: models agents' adaptation via a controlled Markov Chain described by kernel $\mathsf{P}_{\theta}: \mathsf{Z} \times \mathcal{Z} \to \mathbb{R}_+$ and stationary dist. $\mathcal{D}(\theta)$.

SA Algorithm with Adapted Agent Response

Agents draw: $z_{k+1} \sim \mathsf{P}_{\theta_k}(z_k, \cdot)$ (\leftarrow allows slow adaptation) Learner updates: $\theta_{k+1} = \theta_k - \gamma_{k+1} \nabla \ell(\theta_k; z_{k+1})$ and deploys θ_{k+1} .

Example: AR model, agents running SGD to adapt to $z \sim \mathcal{D}(\theta)$: $z_{k+1} = z_k + \alpha \nabla_z U(z_k; \theta_k, \zeta_{k+1}), \quad \leftarrow U = \text{utility fct.}$

♦ **Challenge:** Analyze MSE $\mathbb{E}[\|\theta_k - \theta_{PS}\|^2]$ w.o. boundedness assumption.

Main Results

 \Diamond

 $\diamond \text{ Define: } f(\theta_1; \theta_2) = \mathbb{E}_{z \sim \mathcal{D}(\theta_2)} \left[\ell(\theta_1; z) \right], \ \nabla f(\theta_1; \theta_2) = \mathbb{E}_{z \sim \mathcal{D}(\theta_2)} \left[\nabla \ell(\theta_1; z) \right]$

- \diamond A1. μ -strongly convex. A2. *L*-jointly Lipschitz gradient.
- ♦ A3. (*ϵ*-sensitivity) $W_1(\mathcal{D}(\theta), \mathcal{D}(\theta')) \le \epsilon \|\theta \theta'\|, \forall \theta, \theta' \in \mathbb{R}^d$,
- \diamond A4. σ -perturbation with sampled gradient $\sup_{z \in 7} \|\nabla \ell(\theta; z) - \nabla f(\theta; \theta_{PS})\| \le \sigma (1 + \|\theta - \theta_{PS}\|)$

♦ A5. Poisson equation: $\exists \widehat{\nabla \ell} : \mathbb{R}^d \times \mathbb{Z} \to \mathbb{R}^d$ s.t. $\forall \theta, \theta' \in \mathbb{R}^d, z \in \mathbb{Z}$, $\nabla \ell(\theta';z) - \mathbb{E}_{z'\sim \mathcal{D}(\theta)}[\nabla \ell(\theta';z)] = \widehat{\nabla \ell}(\theta';z) - \mathsf{P}_{\theta}\widehat{\nabla \ell}(\theta';z).$

 \diamond A6. L_{PH} -smoothness for Poisson equation $\sup_{z\in Z} \|\mathsf{P}_{\theta}\widehat{\nabla \ell}(\theta;z) - \mathsf{P}_{\theta'}\widehat{\nabla \ell}(\theta';z)\| \leq L_{PH} \|\theta - \theta'\|, \ \forall \ \theta, \theta'.$

Example: For all θ , uniformly geometrically ergodic MC (P $_{\theta}$) (A5 \checkmark). **Example**: Agents' utility function $U(\cdot)$ is quadratic (A6 \checkmark). \Diamond

Theorem Under A1-A6. Let $\epsilon < \frac{\mu}{I}$ and with non-increasing step sizes $\{\gamma_k\}_{k>1}$, there exists \mathbb{C} where it holds

 $\mathbb{E}[\|\theta_k - \theta_{PS}\|^2] \le \prod_{i=1}^k \left(1 - \gamma_i \frac{\mu - L\epsilon}{2}\right) \|\theta_0 - \theta_{PS}\|^2 + \underbrace{\mathbb{C}\gamma_k}_{\text{Fluctuation}},$ Transien⁻

♦ Convergence region: $\epsilon < \frac{\mu}{I}$, Convergence rate O(1/k). \diamond (Non-convex ℓ) Convergence to near-stationary point of $\mathcal{L}(\theta)$.

Numerical Experiments

Logistic Regression —

- Reference
- mative prediction NeurIPS 2020.
- \Diamond world, arXiv:2011.03885 (2020).

◇ Perdomo, Juan, et al. *Performative prediction*, ICML 2020. ♦ Mendler-Dünner, et al. Stochastic optimization for perfor-Brown, Gavin, et al. Performative prediction in a stateful